Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > IMECís unique micronail chip makes electronics and bio cells communicate

Cortical neurons engulf microscopic nail structures on the surface of IMECís micronail chip (3-day in vitro culture)
Cortical neurons engulf microscopic nail structures on the surface of IMECís micronail chip (3-day in vitro culture)

Abstract:
IMEC presents a unique microchip with microscopic nail structures that enable close communication between the electronics and biological cells. The new chip is a mass-producible, easy-to-use tool in electrophysiology research, for example for fundamental research on the functioning and dysfunctioning of the brain. Each micronail structure serves as a close contact-point for one cell, and contains an electrode that can very accurately record and trigger in real-time the electrical activity of an individual electrogenic cell in a network.

IMECís unique micronail chip makes electronics and bio cells communicate

Leuven, Belgium | Posted on November 12th, 2009

Electrogenic cells such as cardiomyocytes (heart cells) or neurons (brain cells) rely on electrical signals to communicate with one another. Knowledge of the electrical activity of these cells is essential to gain insights in the communication process of these cells, to unravel the cause of brain disorders such as Alzheimer's or Parkinson's disease, or validate the effect of drugs on cardiac cells in the struggle against cardiac diseases, etc. IMEC's new micronail chip is the ideal instrument to study the communication mechanisms between cells. The electrodes in IMEC's micronail chip are downsized to the size of cells and even smaller. They consist of tiny nail structures made of a metal stem covered with an oxide layer, and a conductive (e.g. gold or titaniumnitride) tip. When cells are applied on the chip surface, their cell membrane strongly engulfs the nail structures, thereby realizing an intimate contact with the electrode. This very close contact improves the signal-to-interference ratio enabling precise recording of electrical signals and electrical stimulation of single cells.

"We tackled several challenges to realize this micronail chip such as keeping the cells alive on the chip surface; combining the wet cell solution with the electronics underneath without destroying the electronics; guiding the cell growth so that the cell body is just on top of one individual electrode; and last but not least: bring the cells as close as possible to the chip surface. Know, we have a unique instrument to record and interpret the signals of the neurons. We can also stimulate neurons and follow up the consequences to unravel the functioning of our brain," said Wolfgang Eberle, Group manager Bioelectronic systems.

Kris Verstreken, Director Bio-Nanoelectronics added, "Little is known about the functioning of our brain. Where do emotions origin? How do we build up memories? Or what is the cause of brain diseases such as Parkinson's disease or Alzheimer's disease? Many processes in our brain are unknown. Neurons are very plastic cells, continuously forming new connections and breaking up or rebuilding new ones. But how do they do that? And which are the consequences for learning and development? On the long term, we can use the knowledge that we build up with in vitro experiments on our micronail chip to diagnose diseases, or even develop therapies, by stimulating cells, or building new communication bridges between cells after a brain infarct."

IMEC is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut"), IMEC in Belgium (IMEC vzw supported by the Flemish Government), stichting IMEC Nederland (IMEC-NL) and IMEC Taiwan Co. (IMEC-TW).

####

About IMEC
IMEC performs world-leading research in nanotechnology. IMEC leverages its scientific knowledge with the innovative power of its industrial partnerships in ICT, healthcare and energy. IMEC delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.
IMEC is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,650 people include over 550 industrial residents and guest researchers. In 2008, IMEC's revenue (P&L) was 270 million euro.

For more information, please click here

Contacts:
Katrien Marent
Director of External Communications
Mobile: +32 474 30 28 66,

Barbara Kalkis
Maestro Marketing & PR
T: +1 408 996 9975

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Nanomedicine

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

QuantuMDx announce prototype handheld lab for 15 minute malaria diagnosis and drug resistance testing April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

Nanoelectronics

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Announcements

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

NanoSafe, Inc. announces the addition of the Labconco Protectorģ Glove Box to its NanoSafe Testedô registry April 23rd, 2014

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Tools

Characterizing inkjet inks: Malvern Instruments presents new rheological research April 23rd, 2014

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Nanobiotechnology

University of Tehran Researchers Invent Non-Enzyme Sensor to Detect Blood Sugar April 23rd, 2014

Gold nanoparticles help target, quantify breast cancer gene segments in a living cell April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE