Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Clemson carbon nanotube research part of $3 million award to enhance energy efficiency

 Dr. Apparao Rao and graduate student Jason Reppert assess the outcome of a nanotube synthesis procedure.  image by: Clemson University
Dr. Apparao Rao and graduate student Jason Reppert assess the outcome of a nanotube synthesis procedure.
image by: Clemson University

Abstract:
Clemson University is part of a five-year $3 million Air Force Office of Scientific Research award, along with the University of Texas at Dallas and Yale University, to search for nanoscale materials that superconduct to allow for efficient flow of a current.

Clemson carbon nanotube research part of $3 million award to enhance energy efficiency

Clemson, SC | Posted on November 10th, 2009

Specifically, the team will explore carbon nanotube-based superconductors to develop composite wires that may eventually be used, among other things, to replace inefficient copper wiring in power lines that presently can lose up to a third of their energy as heat.

"In the superconducting state, the flow of charges does not experience resistance, so the current flow is very efficient," said Clemson University physics professor Apparao Rao. "The holy grail is to get these charges to move with similar efficiency at room temperature instead of at extremely cool temperatures."

At Clemson, Rao has used pulsed lasers to produce superconducting nanotubes that are thousands of times smaller than a strand of hair, also referred to as low-dimensional materials. The process developed in his labs yields carbon nanotubes that are doped with elemental boron, which enables the nanotubes to superconduct at low temperatures.

"We are very excited about this discovery since superconducting nanotubes are not only useful in several applications but also serve as an ideal candidate to explore the underpinning physics in low-dimensional materials, which has long been a challenge," said Rao. "Clemson's role in this research is to build on this success and experiment with nanotubes doped with other elements such as sulfur, nitrogen and phosphorous with a view toward fabricating doped nanotubes that superconduct without having to cool them to very low temperatures, which is the technology used today."

In partnership with UT Dallas and Yale, Rao says the bigger question to be addressed is the incorporation of Clemson's doped nanotubes into high-strength, lightweight superconducting wires for such uses as medical MRI imaging, efficient power lines and other Air Force applications.

NOTE: Air Force Office of Scientific Research award grant number FA9550 - 09 - 1 - 0384.

####

For more information, please click here

Contacts:
* Apparao Rao
*
* 864-656-2063

* Susan Polowczuk
Media Relations
*
* 864-656-2063

Copyright © Clemson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Kalam: versatility personified August 1st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universitšt Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Nanotubes/Buckyballs/Fullerenes

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Announcements

Thin films offer promise for ferroelectric devices: Researchers at Tokyo Institute of Technology demystify the ferroelectric properties observed in hafnium-oxide-based thin films, revealing a potentially useful device material August 3rd, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Energy

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project