Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Roadrunner models shock wave effects on materials at atomic scale

Because of the Roadrunner supercomputer's unique capability, scientists are for the first time attempting to create atomic-scale models that describe how voids are created in materials, mostly metals, how they grow, and merge; how the materials may swell or shrink under stress; and how once broken bonds might reattach, and they're doing it at size and time scales that approach those of actual experiments, so that the models can be validated experimentally.

Roadrunner models shock wave effects on materials at atomic scale

Los Alamos, NM | Posted on November 9th, 2009

Using the reliable SPaSM (Scalable Parallel Short-range Molecular dynamics) code, adapted to run on Roadrunner, Tim Germann of DOE's Los Alamos National Laboratory is studying the physics of how materials break up, called "spall," and how pieces fly off, called "ejecta," from thin sheets of copper as shock waves force the material break apart.

"Our multibillion-atom molecular dynamics code is providing unprecedented insight into the nature of the critical event controlling the strength of materials, a fundamental long-standing problem in materials science," said Germann.

Some phenomena that can lead to "spall failure" as the material breaks apart, take place at precisely the time and length scales which were inaccessible to both simulation and experiment, and so have typically been described by "trial and error" models that could never be directly verified.

Steady advances in both experimental and simulation techniques — and supercomputer performance, culminating with Roadrunner — have closed this gap and are now enabling both simulations and experiments to probe shock deformation at between 1 and 10 microns, and at nanosecond time scales. Spall failure and the ejection of material from shocked metal surfaces are problems that have attracted increased attention both experimentally and theoretically at Los Alamos. Models are required that can predict both when a material will fail, and the amount of mass ejected from a shocked interface with a given surface finish and strength.


About Los Alamos National Laboratory
Los Alamos National Laboratory is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is ensuring the safety, security, and reliability of the nation's nuclear deterrent.

The Los Alamos of today emphasizes worker safety, effective operational safeguards & security, and environmental stewardship, while outstanding science remains the foundation of the Laboratory.

In addition to supporting the Lab's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines.

For more information, please click here

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


Move over, solar: The next big renewable energy source could be at our feet October 20th, 2016

Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures October 20th, 2016

Study explains strength gap between graphene, carbon fiber: Rice University researchers simulate defects in popular fiber, suggest ways to improve it October 19th, 2016

Working under pressure: Diamond micro-anvils with huge pressures will create new materials October 19th, 2016


Unusual quantum liquid on crystal surface could inspire future electronics October 22nd, 2016

Nanosciences: Genes on the rack October 21st, 2016

Physicists use lasers to capture first snapshots of rapid chemical bonds breaking October 21st, 2016

Nanoparticle vaccinates mice against dengue fever October 21st, 2016


Nanosciences: Genes on the rack October 21st, 2016

Smashing metallic cubes toughens them up: Rice University scientists fire micro-cubes at target to change their nanoscale structures October 20th, 2016

EM Resolutions announce the availability of Kleindiek Nanotechnik’s new cryo microgripper for cryo-FIB lift-out October 18th, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project