Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Roadrunner models shock wave effects on materials at atomic scale

Abstract:
Because of the Roadrunner supercomputer's unique capability, scientists are for the first time attempting to create atomic-scale models that describe how voids are created in materials, mostly metals, how they grow, and merge; how the materials may swell or shrink under stress; and how once broken bonds might reattach, and they're doing it at size and time scales that approach those of actual experiments, so that the models can be validated experimentally.

Roadrunner models shock wave effects on materials at atomic scale

Los Alamos, NM | Posted on November 9th, 2009

Using the reliable SPaSM (Scalable Parallel Short-range Molecular dynamics) code, adapted to run on Roadrunner, Tim Germann of DOE's Los Alamos National Laboratory is studying the physics of how materials break up, called "spall," and how pieces fly off, called "ejecta," from thin sheets of copper as shock waves force the material break apart.

"Our multibillion-atom molecular dynamics code is providing unprecedented insight into the nature of the critical event controlling the strength of materials, a fundamental long-standing problem in materials science," said Germann.

Some phenomena that can lead to "spall failure" as the material breaks apart, take place at precisely the time and length scales which were inaccessible to both simulation and experiment, and so have typically been described by "trial and error" models that could never be directly verified.

Steady advances in both experimental and simulation techniques — and supercomputer performance, culminating with Roadrunner — have closed this gap and are now enabling both simulations and experiments to probe shock deformation at between 1 and 10 microns, and at nanosecond time scales. Spall failure and the ejection of material from shocked metal surfaces are problems that have attracted increased attention both experimentally and theoretically at Los Alamos. Models are required that can predict both when a material will fail, and the amount of mass ejected from a shocked interface with a given surface finish and strength.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is ensuring the safety, security, and reliability of the nation's nuclear deterrent.



The Los Alamos of today emphasizes worker safety, effective operational safeguards & security, and environmental stewardship, while outstanding science remains the foundation of the Laboratory.



In addition to supporting the Lab's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines.

For more information, please click here

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Materials/Metamaterials

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Combined effort for structural determination April 15th, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Tools

Better battery imaging paves way for renewable energy future April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project