Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Roadrunner models shock wave effects on materials at atomic scale

Abstract:
Because of the Roadrunner supercomputer's unique capability, scientists are for the first time attempting to create atomic-scale models that describe how voids are created in materials, mostly metals, how they grow, and merge; how the materials may swell or shrink under stress; and how once broken bonds might reattach, and they're doing it at size and time scales that approach those of actual experiments, so that the models can be validated experimentally.

Roadrunner models shock wave effects on materials at atomic scale

Los Alamos, NM | Posted on November 9th, 2009

Using the reliable SPaSM (Scalable Parallel Short-range Molecular dynamics) code, adapted to run on Roadrunner, Tim Germann of DOE's Los Alamos National Laboratory is studying the physics of how materials break up, called "spall," and how pieces fly off, called "ejecta," from thin sheets of copper as shock waves force the material break apart.

"Our multibillion-atom molecular dynamics code is providing unprecedented insight into the nature of the critical event controlling the strength of materials, a fundamental long-standing problem in materials science," said Germann.

Some phenomena that can lead to "spall failure" as the material breaks apart, take place at precisely the time and length scales which were inaccessible to both simulation and experiment, and so have typically been described by "trial and error" models that could never be directly verified.

Steady advances in both experimental and simulation techniques — and supercomputer performance, culminating with Roadrunner — have closed this gap and are now enabling both simulations and experiments to probe shock deformation at between 1 and 10 microns, and at nanosecond time scales. Spall failure and the ejection of material from shocked metal surfaces are problems that have attracted increased attention both experimentally and theoretically at Los Alamos. Models are required that can predict both when a material will fail, and the amount of mass ejected from a shocked interface with a given surface finish and strength.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is ensuring the safety, security, and reliability of the nation's nuclear deterrent.



The Los Alamos of today emphasizes worker safety, effective operational safeguards & security, and environmental stewardship, while outstanding science remains the foundation of the Laboratory.



In addition to supporting the Lab's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines.

For more information, please click here

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Materials/Metamaterials

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Announcements

Measuring the Smallest Magnets July 28th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Tools

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Malvern Instruments completes acquisition of MicroCal and announces purchase of Archimedes product from Affinity Biosensors July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE