Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Roadrunner models shock wave effects on materials at atomic scale

Because of the Roadrunner supercomputer's unique capability, scientists are for the first time attempting to create atomic-scale models that describe how voids are created in materials, mostly metals, how they grow, and merge; how the materials may swell or shrink under stress; and how once broken bonds might reattach, and they're doing it at size and time scales that approach those of actual experiments, so that the models can be validated experimentally.

Roadrunner models shock wave effects on materials at atomic scale

Los Alamos, NM | Posted on November 9th, 2009

Using the reliable SPaSM (Scalable Parallel Short-range Molecular dynamics) code, adapted to run on Roadrunner, Tim Germann of DOE's Los Alamos National Laboratory is studying the physics of how materials break up, called "spall," and how pieces fly off, called "ejecta," from thin sheets of copper as shock waves force the material break apart.

"Our multibillion-atom molecular dynamics code is providing unprecedented insight into the nature of the critical event controlling the strength of materials, a fundamental long-standing problem in materials science," said Germann.

Some phenomena that can lead to "spall failure" as the material breaks apart, take place at precisely the time and length scales which were inaccessible to both simulation and experiment, and so have typically been described by "trial and error" models that could never be directly verified.

Steady advances in both experimental and simulation techniques and supercomputer performance, culminating with Roadrunner have closed this gap and are now enabling both simulations and experiments to probe shock deformation at between 1 and 10 microns, and at nanosecond time scales. Spall failure and the ejection of material from shocked metal surfaces are problems that have attracted increased attention both experimentally and theoretically at Los Alamos. Models are required that can predict both when a material will fail, and the amount of mass ejected from a shocked interface with a given surface finish and strength.


About Los Alamos National Laboratory
Los Alamos National Laboratory is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is ensuring the safety, security, and reliability of the nation's nuclear deterrent.

The Los Alamos of today emphasizes worker safety, effective operational safeguards & security, and environmental stewardship, while outstanding science remains the foundation of the Laboratory.

In addition to supporting the Lab's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines.

For more information, please click here

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press


Piezomagnetic material changes magnetic properties when stretched March 22nd, 2018

New 4-D printer could reshape the world we live in March 20th, 2018

Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated: Controlling nano surface roughness of porous silicon March 20th, 2018

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018


Piezomagnetic material changes magnetic properties when stretched March 22nd, 2018

Design approach developed for important new catalysts for energy conversion and storage: New method could aid in design of pharmaceuticals and optical and data storage materials March 21st, 2018

Leti and Inac Show Path to Creating Building Blocks of Quantum Processors With 28Si isotope in a CMOS Line: Fabrication of Isotopically Enriched, Industry-Compatible Wafers Points Way To Realizing Silicon Spin Quantum Bits with Enhanced Fidelity March 20th, 2018

GLOBALFOUNDRIES Launches RF Ecosystem Program to Accelerate Time-to-Market for Wireless Connectivity, Radar and 5G Applications: RFWave Partner Program expands the ecosystem and enables faster product deployment on GFs RF technology platforms March 20th, 2018


Imaging technique pulls plasmon data together: Rice University scientists' hyperspectral method analyzes many plasmonic nanoparticles in an instant March 16th, 2018

Movable silicon 'lenses' enable neutrons to see new range of details inside objects March 15th, 2018

Jim Barnhart Joins Nanometrics as Senior Vice President of Operations March 15th, 2018

Department of Materials Test Engineering (WPT) at TU Dortmund University uses Deben CT5000TEC stage to perform X-ray micro-tomography experiments for better understanding of damage progression in composite materials March 13th, 2018

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project