Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > How Size Matters for Catalysts

University of Utah chemistry Prof. Scott Anderson and doctoral student Bill Kaden work on the elaborate apparatus they use to produce and study catalysts, which are substances that speed chemical reactions without being consumed. The world economy depends on catalysts, and the Utah research is aimed at making cheaper, more efficient catalysts, which could improve energy production and reduce emissions of Earth-warming gases.

Photo Credit: William Kunkel
University of Utah chemistry Prof. Scott Anderson and doctoral student Bill Kaden work on the elaborate apparatus they use to produce and study catalysts, which are substances that speed chemical reactions without being consumed. The world economy depends on catalysts, and the Utah research is aimed at making cheaper, more efficient catalysts, which could improve energy production and reduce emissions of Earth-warming gases. Photo Credit: William Kunkel

Abstract:
Study Links Size, Activity, Electronic Properties

How Size Matters for Catalysts

Salt Lake City, UT | Posted on November 8th, 2009

University of Utah chemists demonstrated the first conclusive link between the size of catalyst particles on a solid surface, their electronic properties and their ability to speed chemical reactions. The study is a step toward the goal of designing cheaper, more efficient catalysts to increase energy production, reduce Earth-warming gases and manufacture a wide variety of goods from medicines to gasoline.

Catalysts are substances that speed chemical reactions without being consumed by the reaction. They are used to manufacture most chemicals and many industrial products. The world's economy depends on them.

"One of the big uncertainties in catalysis is that no one really understands what size particles of the catalyst actually make a chemical reaction happen," says Scott Anderson, a University of Utah chemistry professor and senior author of the study in the Friday, Nov. 6 issue of the journal Science. "If we could understand what factors control activity in catalysts, then we could make better and less expensive catalysts."

"Most catalysts are expensive noble metals like gold or palladium or platinum," he adds. "Say in a gold catalyst, most of the metal is in the form of large particles, but those large particles are inactive and only nanoparticles with about 10 atoms are active. That means more than 90 percent of gold in the catalyst isn't doing anything. If you could make a catalyst with only the right size particles, you could save 90 percent of the cost or more."

In addition, "there's a huge amount of interest in learning how to make catalysts out of much less expensive base metals like copper, nickel and zinc," Anderson says. "And the way you are going to do that is by 'tuning' their chemical properties, which means tuning the electronic properties because the electrons control the chemistry."

The idea is to "take a metal that is not catalytically active and, when you reduce it to the appropriate size [particles], it can become catalytic," Anderson says. "That's the focus of our work - to try to identify and understand what sizes of metal particles are active as catalysts and why they are active as catalysts."

In the new study, Anderson and his students took a step toward "tuning" catalysts to have desired properties by demonstrating, for the first time, that the size of metal catalyst "nanoparticles" deposited on a surface affects not only the catalyst's level of activity, but the particles' electronic properties.

Anderson conducted the study with chemistry doctoral students Bill Kaden and William Kunkel, and with former doctoral student Tianpin Wu. Kaden was first author.

The Economy Depends on Catalysts

"Catalysts are a huge part of the economy," Anderson says. "Catalysts are used for practically every industrial process, from making gasoline and polymers to pollution remediation and rocket thrusters."

Catalysts are used in 90 percent of U.S. chemical manufacturing processes and to make more than 20 percent of all industrial products, and those processes consume large amounts of energy, according to the U.S. Department of Energy (DOE).

In addition, industry produces 21 percent of U.S. Earth-warming carbon dioxide emissions - including 3 percent by the chemical industry, DOE says.

Thus, improving the efficiency of catalysts is "the key to both energy savings and carbon dioxide emissions reductions," the agency says.

Catalysts also are used in drug manufacturing; food processing; fuel cells; fertilizer production; conversion of natural gas, coal or biomass into liquid fuels; and systems to reduce pollutants and improve the efficiency of combustion in energy production.

The North American Catalysis Society says catalysts contribute 35 percent or more of global Gross Domestic Product. "The biggest part of this contribution comes from generation of high energy fuels (gasoline, diesel, hydrogen), which depend critically on the use of small amounts of catalysts in … petroleum refineries," the group says.

"The development of inexpensive catalysts … is pivotal to energy capture, conversion and storage," says Henry White, professor and chair of chemistry at the University of Utah. "This research is vital to the energy security of the nation."

Catalyst Research: What Previous Studies and the New Study Showed

Many important catalysts - such as those in catalytic converters that reduce motor vehicle emissions - are made of metal particles that range in size from microns (millionths of a meter) down to nanometers (billionths of a meter).

As the size of a catalyst metal particle is reduced into the nanoscale, its properties initially remain the same as a larger particle, Anderson says. But when the size is smaller than about 10 nanometers - containing about 10,000 atoms of catalyst - the movements of electrons in the metal are confined, so their inherent energies are increased.

When there are fewer than about 100 atoms in catalyst particles, the size variations also result in fluctuations in the electronic structure of the catalyst atoms. Those fluctuations strongly affect the particles' ability to act as a catalyst, Anderson says.

Previous experiments documented that electronic and chemical properties of a catalyst are affected by the size of catalyst particles floating in a gas. But those isolated catalyst particles are quite different than catalysts that are mounted on a metal oxide surface - the way the catalyst metal is supported in real industrial catalysts.

Past experiments with catalysts mounted on a surface often included a wide variety of particle sizes. So those experiments failed to detect how the catalyst's chemical activity and electronic properties vary depending with the size of individual particles.

Anderson was the first American chemist to sort metal catalyst particles by size and demonstrate how their reactivity changes with size. In previous work, he studied gold catalyst particles deposited on titanium dioxide.

The new study used palladium particles of specific sizes that were deposited on titanium dioxide and used to convert carbon monoxide into carbon dioxide.

The study not only showed how catalytic activity varies with catalyst particle size, "but we have been able to correlate that size dependence with observed electronic differences in the catalyst particles," Kaden says. "People had speculated this should be happening, but no one has ever seen it."

Anderson says it is the first demonstration of a strong correlation between the size and activity of a catalyst on a metal surface and electronic properties of the catalyst.

How the Study was Conducted

Using an elaborate apparatus in Anderson's laboratory, the chemists aimed a laser beam to vaporize palladium, creating electrically charged, palladium nanoparticles in a vapor carried by a stream of helium gas.

Electromagnetic fields are used to capture the particles and send them through a mass spectrometer, which selects only the sizes of palladium particles Anderson and colleagues want to study. The desired particles then are deposited on a single crystal of titanium oxide that measures less than a half-inch on a side.

Next, the chemists use various methods to characterize the sample of palladium catalyst particles: specifically the palladium catalyst's electronic properties, physical shape and chemical activity.

####

Contacts:
Scott Anderson
professor of chemistry
Office phone: (801) 585-7289
Cell phone: (801) 413-9174


Bill Kaden
doctoral student in chemistry
Office phone: (801) 581-6644


Lee J. Siegel
science news specialist, University of Utah Public Relations
Office phone: (801) 581-8993
Cell phone: (801) 244-5399

Copyright © University of Utah

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Chemistry

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Phononic SEIRA -- enhancing light-molecule interactions via crystal lattice vibrations April 10th, 2018

Possible Futures

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Announcements

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Food/Agriculture/Supplements

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

Twisting laser light offers the chance to probe the nano-scale: A new method to sensitively measure the structure of molecules has been demonstrated by twisting laser light and aiming it at miniscule gold gratings to separate out wavelengths: April 5th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

Environment

'Sweet spot' in sweet material for hydrogen storage: Study IDs 'white graphene' architecture with unprecedented hydrogen storage capacity March 12th, 2018

Converting CO2 into Usable Energy: Scientists show that single nickel atoms are an efficient, cost-effective catalyst for converting carbon dioxide into useful chemicals March 1st, 2018

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Energy

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Light 'relaxes' crystal to boost solar cell efficiency: Rice, Los Alamos discovery advances case for perovskite-based solar cells April 6th, 2018

Double perovskites in environmentally friendly solar cells: Long electron-hole diffusion length in high-quality lead-free double perovskite films April 6th, 2018

Automotive/Transportation

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

CAP-XX Develops Industry’s First 3 Volt Thin Prismatic Supercapacitors: Provides peak power support to 3V coin cell batteries and eliminates need for 2.7V LDO regulator for less expensive, smaller, more energy-efficient designs with extended battery life April 11th, 2018

Mapping battery materials with atomic precision: Berkeley Lab researchers map the atoms of battery materials and explored how composition affects structure March 8th, 2018

GLOBALFOUNDRIES Strengthens 22FDX® eMRAM Platform with eVaderis’ Ultra-low Power MCU Reference Design: Co-developed technology solution enables significant power and die size reductions for IoT and wearable products February 27th, 2018

Aerospace/Space

Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018

How do very small particles behave at very high temperatures? April 6th, 2018

Deep Space Industries to provide Comet satellite propulsion for BlackSky, LeoStella April 3rd, 2018

Piezomagnetic material changes magnetic properties when stretched March 22nd, 2018

Industrial

Leti and Inac Show Path to Creating Building Blocks of Quantum Processors With 28Si isotope in a CMOS Line: Fabrication of Isotopically Enriched, Industry-Compatible Wafers Points Way To Realizing Silicon Spin Quantum Bits with Enhanced Fidelity March 20th, 2018

Glass matters: UCSB researchers find that the chemical topology of silica can influence the effectiveness of many chemical processes that use it March 14th, 2018

Big steps toward control of production of tiny building blocks March 9th, 2018

GLOBALFOUNDRIES Strengthens 22FDX® eMRAM Platform with eVaderis’ Ultra-low Power MCU Reference Design: Co-developed technology solution enables significant power and die size reductions for IoT and wearable products February 27th, 2018

Fuel Cells

A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018

Rice sleuths find metal in 'metal-free' catalysts: Study of graphene catalysts finds trace of manganese, suggests better ultrathin fuel-cell components February 26th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project