Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NC State Research to Determine Where Nanomaterials Go in the Body

Abstract:
Tiny, engineered nanomaterials can already be found in many consumer products, and have been hailed as having widespread future uses in areas ranging from medicine to industrial processes. However, little is known about what happens if these nanomaterials get into your body - where do they go? NC State researchers are working to answer that question under a grant from the National Institutes of Health (NIH).

NC State Research to Determine Where Nanomaterials Go in the Body

Raleigh, NC | Posted on November 2nd, 2009

"There has been a great deal of research into the use of manufactured carbon nanomaterials in various products, but there are still a lot of questions about how these materials will interact with biological systems," says Dr. Nancy Monteiro-Riviere, a professor of investigative dermatology and toxicology at the Center for Chemical Toxicology Research and Pharmacokinetics at NC State and lead investigator of the study. "There is a crucial need to understand how these manufactured carbon nanomaterials will act once they are in the body - particularly where environmental or occupational exposure can occur."

The two-year research project, which is being funded by NIH at approximately $658,000, has several specific goals. First, the researchers will determine how and whether the size and surface charge of four fullerenes - or specifically shaped carbon nanoparticles - effects how the fullerenes interact with the body. "Our hypothesis is that the size and charge of these fullerenes will dictate how the nanoparticles are absorbed by the body, how they are distributed within the body, how the body metabolizes the nanoparticles and - ultimately - how and whether the body can eliminate the nanoparticles," says Monteiro-Riviere.

A second goal is to determine how fullerene size and surface charge affect the distribution of the nanoparticles in the body's organs and plasma, when the fullerenes are injected intravenously. This component of the study will be performed in animal models that are well understood, and where the findings can then be extrapolated to humans. Researchers will also identify any adverse health effects resulting from acute exposure to the nanomaterials.

Finally, the researchers will assess how the body absorbs fullerenes when exposed to the nanomaterials orally or through abraded skin - two routes of exposure that are particularly relevant to real-world scenarios, such as exposure in the workplace.

"The work being done in this project will not only improve our understanding of how nanomaterials behave in the body, but will also help us identify in vitro assays, which can be performed in a laboratory, that predict how the nanomaterials will behave in the body," says Monteiro-Riviere.

NC State's research team working on the project includes Drs. Nancy Monteiro-Riviere, Jim Riviere, Burroughs Wellcome Fund Distinguished Professor of Pharmacology and director of the Center for Chemical Toxicology Research and Pharmacokinetics, Xin Xia, research assistant professor of pharmacology, and Keith Linder, assistant professor of pathology.

####

About North Carolina State University
With more than 31,000 students and nearly 8,000 faculty and staff, North Carolina State University is a comprehensive university known for its leadership in education and research, and globally recognized for its science, technology, engineering and mathematics leadership.

NC State students, faculty and staff are focused. As one of the leading land-grant institutions in the nation, NC State is committed to playing an active and vital role in improving the quality of life for the citizens of North Carolina, the nation and the world.

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Nancy Monteiro-Riviere
919.513.6426

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Preparing for Nano

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Personal Care/Cosmetics

Programmable materials find strength in molecular repetition May 23rd, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

New ORNL method could unleash solar power potential March 16th, 2016

Safety-Nanoparticles/Risk management

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

NIST updates 'sweet' 1950s separation method to clean nanoparticles from organisms January 27th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

Nanobiotechnology

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Nanobiotix's promising data from Phase I/II head and neck cancer trial presented at ASCO June 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project