Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoparticle-based battlefield pain treatment moves step closer: Discovery of way to balance effects of two drugs sets stage for safer pain relief

Abstract:
University of Michigan scientists have developed a combination drug that promises a safer, more precise way for medics and fellow soldiers in battle situations to give a fallen soldier both morphine and a drug that limits morphine's dangerous side effects.

Nanoparticle-based battlefield pain treatment moves step closer: Discovery of way to balance effects of two drugs sets stage for safer pain relief

Ann Arbor, MI | Posted on September 24th, 2009

They use nanotechnology to devise ultra-small polymer particles capable of carrying the drugs into the body. The development of the combination drug makes possible a precise feedback system that can safely regulate release of the drugs aboard the nanoparticles.

The scientists at the Michigan Nanotechnology Institute for Medicine and Biological Sciences report their results in the September issue of Bioorganic & Medicinal Chemistry Letters.

Context

Soldiers injured in combat typically receive morphine as soon as possible to relieve pain. Morphine, however, also depresses normal breathing and blood pressure, sometimes to life-threatening levels. So medics need to give a short-acting drug that aids normal respiration and heart beat, but in doses that still allow the morphine to relieve pain effectively. Today, achieving that balance is a challenge outside a hospital.

The combination drug that U-M scientists have developed promises to make balanced treatment possible even in combat zones, says James R. Baker, Jr., M.D., director of the Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS) and the study's senior author.

"This system could improve pain management for millions of patients with chronic illnesses," says Baker, Ruth Dow Doan Professor and allergy division chief in the U-M Department of Internal Medicine.

The long-range goal of the research, funded by the U.S. Defense Advanced Research Projects Agency, is to develop a practical method that medics or soldiers themselves could administer, perhaps using an auto-injector device.

Research details

U-M chemists screened several compounds to search for a successful "pro drug," a drug that can release or become another drug. In this case, they wanted one that could convert to Naloxone, a drug now used to counter morphine's effects, but would activate only when blood oxygen levels drop too low.


In laboratory tests using human plasma, one pro drug successfully sensed oxygen levels and turned on or off as needed.

"When respiratory distress is too severe, that will trigger release of Naloxone, the antagonist (morphine-suppressing) drug. When the oxygen blood levels go up, that will stop the action of the antagonist drug and more morphine will be available," says Baohua Huang, Ph.D., the study's first author and a research investigator at the Michigan Nanotechnology Institute and in Internal Medicine.

What's next

MNIMBS scientists are proceeding with animal studies of the pro drug's effects and will develop a dendrimer that can carry the pro drug and morphine, using a dendrimer platform technology previously developed at U-M. They hope to advance to more animal and eventually human studies.

Patents/Disclosures: Patent applications have been filed on related U-M dendrimer inventions.

Additional U-M authors: Shengzhuang Tang, M.S., MNIMBS; Ankur Desai, M.S., MNMBS; Xue-min Cheng, Ph.D., adjunct research associate professor, Department of Internal Medicine and MNIMBS; Alina Kotlyar, M.S., MNIMBS; Abraham Van Der Spek, M.D., associate professor of anesthesiology, and Thommey P. Thomas, Ph.D., research assistant professor, Department of Internal Medicine and MNIMBS.

Citation: Bioorganic & Medicinal Chemistry Letters, Volume 19, Issue 17, 1 September 2009, pp. 5016-5020

Funding: Defense Advanced Research Projects Agency, part of the U.S. Department of Defense.

####

For more information, please click here

Contacts:
Anne Rueter

Phone: 734-764-2220

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Nanomedicine

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Chivalrous Knight Does Pro Bono June 27th, 2015

Green Chemistry Methods Used in Iran to Produce Zinc Oxide Nanoparticles June 27th, 2015

Targeted nanoparticles can overcome drug resistance in trypanosomes: A high-tech approach to combat sleeping sickness and potentially other neglected diseases June 26th, 2015

Discoveries

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Announcements

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Military

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Spintronics advance brings wafer-scale quantum devices closer to reality June 24th, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project