Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Fighting Against Bacteria

Abstract:
New nano-material kills antibiotic-resistant bacteria

Fighting Against Bacteria

Münster | Posted on September 23rd, 2009

Doctors are not well armed in the fight against antibiotic-resitant bacteria. It is very difficult - or, in the worst case, impossible - to fight such infections. A team of researchers in Münster has now developed a unique nano-material that kills antibiotic-resitant bacteria.

Researchers from Münster University and CeNTech (Center for NanoTechnology) were involved in the work, with Prof. Luisa De Cola leading the chemists and Prof. Berenike Maier heading the biologists. "Our results are a premiere. For the first time we have shown that it is possible to equip nano-particles with the following three functions: the particles adhere specifically to bacteria, mark them and then kill them off," says Dr. Cristian Strassert from the Physical Institute at WWU, who led the work on the study.

The starting material used by the researchers is so-called zeolite-L-nano-crystals. In a simple, inexpensive process these nano-particles are provided with a component which enables the particles to adhere to the surface of the bacteria. In addition, the particles are equipped with a colourant which glows green under a fluorescence microscope and makes the bacteria visible.

The effectiveness of the nano-particles is based on the "photodynamic therapy" method, whereby exposure to light sets off a reaction which kills the bacteria cells. The researchers also tack a third material on to the nano-crystals which is activated by red light and produces certain aggressive oxygen molecules. These oxygen molecules - "singlet oxygen" - start a chain reaction which destroys the bacteria cell.

The new nano-particles have hitherto adhered, through electrostatic interplay, to types of bacteria with certain surface properties ("gram-negativ"). The researchers are now working on making binding to other types of bacteria possible and increasing the binding specifity. In future the method could then be used to target certain bacteria in localised illnesses.

"Moreover," says Strassert, "we are looking at whether the method could be used not only to fight antibiotic-resitant bacteria, but also in the treatment of skin cancer." To this end the scientists want to get the nano-particles to bind specifically to cancer cells. "If that succeeds it would be conceivable for the nano-particles to be applied to the skin in future in a cream," says Strassert, describing his vision. "Through exposure to light the particles could then be activated and the cancer cells destroyed."

####

About Westfälische Wilhelms-Universität Münster
The research profile of the WWU Münster is marked by a considerable number of research focal points of proven excellence – in the humanities (including the Theological Faculties), law, business administration, natural sciences, mathematics and medicine. For example the Leibniz Prize, also known as the "German Nobel Prize", has been awarded to WWU Münster no fewer than four times since 2003. The award-winners are Prof. Hubert Wolf (theology), Prof. Barbara Stollberg-Rilinger (history), Prof. Klaus Mezger (geochemistry) and Prof. Wolfgang Lück (mathematics).

For more information, please click here

Contacts:
Schlossplatz 2
D-48149 Münster

Tel: +49(0)251/83-0
Fax: +49(0)251/83-3 20 90

Copyright © Westfälische Wilhelms-Universität Münster

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Products

Aculon Launches NanoProof Series for PCB Waterproofing July 20th, 2015

Philips Introduces Quantum Dot TV with Color IQ™ Technology from QD Vision: Manufacturer is first to offer quantum dot displays for both TVs and monitors June 30th, 2015

Dais Analytic Unveils New Version of Aqualyte Membrane Technology: Updates to the Basis of the Company's Industry-Changing Nanotechnology Designed to Strengthen Position in Global Air, Energy, and Water Markets June 26th, 2015

Industrial Nanotech, Inc. Announces Launch of Heat Shield(TM) EPX4 Thermal Insulation and Chemical Resistant Coating June 12th, 2015

Possible Futures

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Nanomedicine

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Announcements

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Nanobiotechnology

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Programming adult stem cells to treat muscular dystrophy and more by mimicking nature July 22nd, 2015

Biophotonics - Global Strategic Business Report 2015 July 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project