Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > Fighting Against Bacteria

New nano-material kills antibiotic-resistant bacteria

Fighting Against Bacteria

Münster | Posted on September 23rd, 2009

Doctors are not well armed in the fight against antibiotic-resitant bacteria. It is very difficult - or, in the worst case, impossible - to fight such infections. A team of researchers in Münster has now developed a unique nano-material that kills antibiotic-resitant bacteria.

Researchers from Münster University and CeNTech (Center for NanoTechnology) were involved in the work, with Prof. Luisa De Cola leading the chemists and Prof. Berenike Maier heading the biologists. "Our results are a premiere. For the first time we have shown that it is possible to equip nano-particles with the following three functions: the particles adhere specifically to bacteria, mark them and then kill them off," says Dr. Cristian Strassert from the Physical Institute at WWU, who led the work on the study.

The starting material used by the researchers is so-called zeolite-L-nano-crystals. In a simple, inexpensive process these nano-particles are provided with a component which enables the particles to adhere to the surface of the bacteria. In addition, the particles are equipped with a colourant which glows green under a fluorescence microscope and makes the bacteria visible.

The effectiveness of the nano-particles is based on the "photodynamic therapy" method, whereby exposure to light sets off a reaction which kills the bacteria cells. The researchers also tack a third material on to the nano-crystals which is activated by red light and produces certain aggressive oxygen molecules. These oxygen molecules - "singlet oxygen" - start a chain reaction which destroys the bacteria cell.

The new nano-particles have hitherto adhered, through electrostatic interplay, to types of bacteria with certain surface properties ("gram-negativ"). The researchers are now working on making binding to other types of bacteria possible and increasing the binding specifity. In future the method could then be used to target certain bacteria in localised illnesses.

"Moreover," says Strassert, "we are looking at whether the method could be used not only to fight antibiotic-resitant bacteria, but also in the treatment of skin cancer." To this end the scientists want to get the nano-particles to bind specifically to cancer cells. "If that succeeds it would be conceivable for the nano-particles to be applied to the skin in future in a cream," says Strassert, describing his vision. "Through exposure to light the particles could then be activated and the cancer cells destroyed."


About Westfälische Wilhelms-Universität Münster
The research profile of the WWU Münster is marked by a considerable number of research focal points of proven excellence – in the humanities (including the Theological Faculties), law, business administration, natural sciences, mathematics and medicine. For example the Leibniz Prize, also known as the "German Nobel Prize", has been awarded to WWU Münster no fewer than four times since 2003. The award-winners are Prof. Hubert Wolf (theology), Prof. Barbara Stollberg-Rilinger (history), Prof. Klaus Mezger (geochemistry) and Prof. Wolfgang Lück (mathematics).

For more information, please click here

Schlossplatz 2
D-48149 Münster

Tel: +49(0)251/83-0
Fax: +49(0)251/83-3 20 90

Copyright © Westfälische Wilhelms-Universität Münster

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

Relaunch of the Nanoscribe Website New design, optimized research, and impressive gallery of applications July 21st, 2014

Dongbu HiTek Unveils Low-Voltage BCDMOS Process for Efficient Power Management in Smart Phones and Tablet Computers July 21st, 2014

Iran to Host 1st Asian Congress on Nanostructures on Kish Island July 21st, 2014


QuantuMDx announce prototype handheld lab for 15 minute malaria diagnosis and drug resistance testing April 23rd, 2014

Nanovations Sets new Benchmark in Automotive Windscreen Coating Durability: Nanovations new automotive glass coating Vision Protect, sets new benchmark in glass coating durability March 23rd, 2014

Tawada CleanTech to show fabric duct and eco cool coating in MegaBuild March 21st, 2014

NEI Introduces Self-healing Anti-corrosion Coating for Zinc-Plated and Galvanized Steel March 14th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014


SentiMag® Now Available in Australia and New Zealand July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis July 19th, 2014

Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014


Oxford Instruments Asylum Research Opens an Atomic Force Microscopy Demonstration Lab in Mumbai, India July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Iran to Host 1st Asian Congress on Nanostructures on Kish Island July 21st, 2014


Production of Non-Virus Nanocarriers with Highest Amount of Gene Delivery July 17th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Tiny DNA pyramids enter bacteria easily -- and deliver a deadly payload July 9th, 2014

Artificial cilia: Scientists from Kiel University develop nano-structured transportation system July 4th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE