Nanotechnology Now

Heifer International

Wikipedia Affiliate Button


Home > Press > CAP-XX Updates Study Comparing Xenon Flash and High-Power LED BriteFlash

Supercapacitor-optimized LED Flash Drivers Integrate Circuitry Outlined in Blue
Supercapacitor-optimized LED Flash Drivers Integrate Circuitry Outlined in Blue

Supercapacitor-powered LEDs outshine xenon for a thin-form camera-phone flash solution

CAP-XX Updates Study Comparing Xenon Flash and High-Power LED BriteFlash

Sydney, Australia | Posted on September 23rd, 2009

CAP-XX Limited (LSE:CPX), developer of thin-form supercapacitors, has published an updated study comparing flash solutions for camera phones - xenon, standard LEDs powered by a battery, and high-current LEDs powered by a supercapacitor using the company's BriteFlash™ power architecture. The study tested each solution's ability to deliver the light energy needed to take digital-still-camera-quality pictures in low-light conditions, and also compared shutter requirements, ease of design-in, safety and size.

The original report from October 2006 compared light power and energy using 1.3 to 3.2-megapixel camera phones. The new report includes data from 5-megapixel camera phones released in the last year, and also considers advancements in camera sensors, xenon flash units, high-power white LEDs (WLEDS) and LED flash drivers.

Tests again showed that the LED BriteFlash approach delivers more light energy than most xenon flashes in a thin form factor suitable for slim camera phones and digital cameras.

Clear pictures in dim environments require sufficient light energy - the total amount of light received by each pixel in the camera sensor - during image-capture time. "People often wrongly assume that light power, which is the brightness or intensity of the flash, is the key because it's what draws our attention, but it's really the light energy that counts," said Pierre Mars, CAP-XX vice president of applications engineering.

To calculate light energy, one would multiply light power (in lux) by the duration of the flash exposure (in seconds): Light power (lux) x flash exposure time (sec) = light energy (lux.sec). Ten to fifteen lux.sec of light energy is ideal for high-resolution pictures:

Xenon flash tubes driven by electrolytic storage capacitors deliver higher light power, but over a very short flash exposure. High-current LEDs driven by a supercapacitor deliver lower light power, but over a longer flash exposure to generate more light energy.

Flash solutions tested

* Xenon: SonyEricsson K800, LG KU990, Nokia N82 and Samsung G800, all with 5-megapixel cameras but with varying size electrolytic storage capacitors.
* Standard battery-powered LEDs: Nokia N73 (3.2-megapixel) and N96 (5-megapixel)
* Supercapacitor-powered LEDs: To demonstrate the BriteFlash approach, CAP-XX used a small, thin (20mm x 18mm x 3.8mm thick), dual-cell supercapacitor to drive a two-LED array of Philips LUXEON® PWM4s at 2A each or 4A total during the flash pulse.

"BriteFlash maximizes performance from our LUXEON Flash LEDs so that cell phone users get superior image quality," said Michel Zwanenburg, product manager, LUXEON Flash, Philips Lumileds.

A photo detector measured on-axis illumination, while a digital storage oscilloscope captured light power over time at 1 and 2 meters from the source. The areas under the power curves were integrated to measure the light energy at the detector as a function of time.

Study results

The supercapacitor-powered BriteFlash example (two-LED array powered at 2A per LED), using a 15-frame-per-second rolling shutter over a 67-millisecond flash exposure, delivered more light energy than the xenon flashes.

From 1 meter, the BriteFlash LEDs delivered the best of all cases with 21.7 lux.sec, 37 percent more than the best-performing xenon, which was the SonyEricsson K800 with 15.8 lux.sec. The standard battery-powered LED flash unit in the Nokia N73 delivered only 1.71 lux.sec with 1 LED, and 3.45 lux.sec in the Nokia N96 with 2 LEDs.

From 2 meters, the BriteFlash LEDs delivered 7.0 lux.sec, approximately 60 percent more light energy than the 4.45 lux.sec from the best-performing xenon, which was again the SonyEricsson K800. The standard battery-powered LED flash unit in the N73 delivered only 0.43 lux.sec with 1 LED, and 0.86 lux.sec in the N96 with 2 LEDs.

The BriteFlash example over a 33-millisecond flash exposure from 1 meter, which is short enough for crisp images without using anti-handshake image-processing software, delivered comparable light energy to two of the xenon examples: 11.2 lux.sec compared to 11.5 lux.sec from the Samsung G800 and 10.2 lux.sec from the Nokia N82. Image-processing software is readily available for designers to use to correct for hand movement that may blur images captured over a longer, 67-millisecond exposure.

For complete light energy test results, see:

The study also compared ease of design-in, safety and size. Supercapacitor-enabled LED flash units are smaller and thinner than xenon solutions (2 - 4mm thick, occupying less than 2cc, compared to 3.8cc and 7mm thick for the K800 xenon flash unit), use a lower voltage (5V compared to a 330-V electrolytic storage capacitor), recharge quicker between flashes (two seconds compared to eight in the K800), do not require a mechanical shutter to achieve correct exposure, and can handle other peak-power needs in the phone, including the RF power amplifier and audio amplifier. The result is longer talk time and better photos and audio quality. For a more complete comparison, see:

Stuart Robinson, director of handset component technologies for Strategy Analytics, explained, "Consumers want camera phones that rival digital still cameras. We estimate high-powered LED flash will grow significantly, reaching 30% of all camera phones by 2012. Supercapacitors are an enabler for this market and we have seen them power WLEDs to produce clear pictures in low-light conditions."


About CAP-XX
Sydney, Australia-based CAP-XX is a world leader in thin, flat supercapacitors for space-constrained electronic devices. Supercapacitors resolve the performance limitations of batteries and other current-limited power supplies, and provide backup power if the primary power source fails.

CAP-XX supercapacitors, which are also licensed to manufacturing partner Murata, enable manufacturers to make smaller, thinner, longer-running and more feature-rich devices such as camera phones, solid state drives, handheld PCs and battery-free condition-monitoring systems using the company's BritePower™ architectures. The company is listed on the Alternative Investment Market (AIM) in London.

About the BriteFlash power architecture

CAP-XX developed BriteFlash to give designers a thin-form LED flash solution that rivals bulkier xenon. The power architecture combines a LED flash driver, supercapacitor, battery and WLEDs. The flash driver's boost converter charges the supercapacitor to 5.5V, which then delivers high-peak current to drive the LED flash. The battery only supplies average power, and recharges the supercapacitor between flashes.

Other BriteFlash developments include the recent release of several supercapacitor-optimized LED flash drivers, including AnalogicTech's AAT1282, and ON Semiconductor's CAT3224 and NCP5680. These drivers integrate tools to manage the supercapacitor, including the boost converter, supercapacitor balancing, I2C interface and LED current control, thus saving development time, board space and cost.

For more information, please click here

Michelle Moody
+1 214 363 3460

Copyright © CAP-XX

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Imec, Holst Centre and Renesas Present World’s Lowest Power 2.4GHz Radio Chip for Bluetooth Low Energy March 1st, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Thin films

Researchers enable solar cells to use more sunlight February 25th, 2015

Detecting defects at the nanoscale will profit solar panel production: Researcher Mohamed Elrawemi develops new technologies for defects in thin films, vital in products as printed electronics and solar panels February 24th, 2015

Extreme-temperature electronics: Futuristic material molybdenum disulfide may find new application for thin-film transistors in extremely high-temperature electronics and sensors February 11th, 2015

Dance of the nanovortices February 2nd, 2015


Toronto-based Environmental Technology Pioneer Green Earth Nano Science Expands in EU February 6th, 2015

DELSEY by Philippe Starck DELSEY Launches New Collection by Philippe Starck February 4th, 2015

NEI introduces NANOMYTE® SuperAi, a Durable Anti-ice Coating December 4th, 2014

Biosenta Inc. Updates New Household Disinfectant Testing Results; It Kills 100% of a Broad Range of Deadly Molds, Fungi, Bacteria, and Viruses, Including Ebola and Enterovirus D68 November 20th, 2014


New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE