Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > IMEC presents large area solar cells with 18.4% conversion efficiency, featuring Cu-plated contacts

IMEC's i-PERC cell with shallow emitter and Cu metallization
IMEC's i-PERC cell with shallow emitter and Cu metallization

Abstract:
At the European Photovoltaic Solar Energy Conference (Hamburg, Germany), IMEC presents a large-area solar with a conversion efficiency of 18.4%. Compared to the standard i-PERC cell process, IMEC's solar cell features a shallow emitter and advanced front metallization using copper plating. The results were obtained on large-area cells (125cm2), proving the industrial viability of the process.

IMEC presents large area solar cells with 18.4% conversion efficiency, featuring Cu-plated contacts

Leuven, Belgium | Posted on September 22nd, 2009

The shallow emitter results in an enhanced blue response, and thus in a higher conversion efficiency than with a standard emitter. For the front contacts, a novel metallization stack is added which is applied to local openings in the antireflective coating. Dr. Joachim John, team manager at IMEC: "Using copper instead of silver adds to the sustainability of solar cell production. IMEC was able to do this because it has extensive experience with copper plating on silicon". A similar efficiency result was obtained with screen printed contacts, but the long-term sustainability and low-cost potential of Cu-based contacting solutions and the fact that this was a first result obtained without dedicated fine-tuning makes this result particularly encouraging."

Dr. Jef Poortmans, IMEC's Photovoltaics Program Director, states "These cells and the new metallization stack involved are a further successful step in IMEC's target to develop ever more cost-effective, efficient crystalline Si solar cells - eventually targeting cells that are only 40µm thick with efficiencies above 20%."

####

About IMEC
IMEC is a world-leading independent research center in nanoelectronics and nanotechnology. IMEC is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,650 people include over 550 industrial residents and guest researchers. In 2008, IMEC's revenue (P&L) was 270 million euro.

IMEC's More Moore research targets semiconductor scaling for the 22nm technology node and beyond. With its More than Moore research, IMEC invents technology for nomadic embedded systems, wireless autonomous transducer solutions, biomedical electronics, photovoltaics, organic electronics and GaN power electronics.

IMEC's research bridges the gap between the fundamental research at universities and R&D in the industry. It has unique processing and system know-how, intellectual property portfolio, state-of-the-art infrastructure, and a strong and worldwide network position. This makes IMEC a key partner for shaping the technology of the future.

IMEC is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian as a"stichting van openbaar nut"), IMEC in Belgium (IMEC vzw supported by the Flemish Government), stichting IMEC Nederland (IMEC-NL) and IMEC Taiwan Co. (IMEC-TW).

For more information, please click here

Contacts:
IMEC : Katrien Marent, Director of External Communications, T: +32 16 28 18 80, Mobile : +32 474 30 28 66,

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Possible Futures

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Solar/Photovoltaic

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic