Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > IMEC presents large area solar cells with 18.4% conversion efficiency, featuring Cu-plated contacts

IMEC's i-PERC cell with shallow emitter and Cu metallization
IMEC's i-PERC cell with shallow emitter and Cu metallization

Abstract:
At the European Photovoltaic Solar Energy Conference (Hamburg, Germany), IMEC presents a large-area solar with a conversion efficiency of 18.4%. Compared to the standard i-PERC cell process, IMEC's solar cell features a shallow emitter and advanced front metallization using copper plating. The results were obtained on large-area cells (125cm2), proving the industrial viability of the process.

IMEC presents large area solar cells with 18.4% conversion efficiency, featuring Cu-plated contacts

Leuven, Belgium | Posted on September 22nd, 2009

The shallow emitter results in an enhanced blue response, and thus in a higher conversion efficiency than with a standard emitter. For the front contacts, a novel metallization stack is added which is applied to local openings in the antireflective coating. Dr. Joachim John, team manager at IMEC: "Using copper instead of silver adds to the sustainability of solar cell production. IMEC was able to do this because it has extensive experience with copper plating on silicon". A similar efficiency result was obtained with screen printed contacts, but the long-term sustainability and low-cost potential of Cu-based contacting solutions and the fact that this was a first result obtained without dedicated fine-tuning makes this result particularly encouraging."

Dr. Jef Poortmans, IMEC's Photovoltaics Program Director, states "These cells and the new metallization stack involved are a further successful step in IMEC's target to develop ever more cost-effective, efficient crystalline Si solar cells - eventually targeting cells that are only 40µm thick with efficiencies above 20%."

####

About IMEC
IMEC is a world-leading independent research center in nanoelectronics and nanotechnology. IMEC is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,650 people include over 550 industrial residents and guest researchers. In 2008, IMEC's revenue (P&L) was 270 million euro.

IMEC's More Moore research targets semiconductor scaling for the 22nm technology node and beyond. With its More than Moore research, IMEC invents technology for nomadic embedded systems, wireless autonomous transducer solutions, biomedical electronics, photovoltaics, organic electronics and GaN power electronics.

IMEC's research bridges the gap between the fundamental research at universities and R&D in the industry. It has unique processing and system know-how, intellectual property portfolio, state-of-the-art infrastructure, and a strong and worldwide network position. This makes IMEC a key partner for shaping the technology of the future.

IMEC is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian as a"stichting van openbaar nut"), IMEC in Belgium (IMEC vzw supported by the Flemish Government), stichting IMEC Nederland (IMEC-NL) and IMEC Taiwan Co. (IMEC-TW).

For more information, please click here

Contacts:
IMEC : Katrien Marent, Director of External Communications, T: +32 16 28 18 80, Mobile : +32 474 30 28 66,

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Possible Futures

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Energy

Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Solar/Photovoltaic

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project