Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Smaller isn't always better: Catalyst simulations could lower fuel cell cost

Schematic of PEMFC platinum nanoparticle catalyst on graphite carbon support
Schematic of PEMFC platinum nanoparticle catalyst on graphite carbon support

Abstract:
Imagine a car that runs on hydrogen from solar power and produces water instead of carbon emissions. While vehicles like this won't be on the market anytime soon, UW-Madison researchers are making incremental but important strides in the fuel cell technology that could make clean cars a reality.

Smaller isn't always better: Catalyst simulations could lower fuel cell cost

Madison, WI | Posted on September 21st, 2009

Materials Science and Engineering Assistant Professor Dane Morgan and PhD student Edward (Ted) Holby have developed a computational model that could optimize an important component of fuel cells, making it possible for the technology to have a more widespread use. Essentially, they investigate how particle size relates to the overall stability of a material, and their model has shown that increasing the particle size of a fuel cell catalyst decreases degradation and therefore increases the useful lifetime of a fuel cell.

Fuel cells are electrochemical devices that facilitate a reaction between hydrogen and oxygen, producing electrical power and forming water. In the type of fuel cells Morgan is researching, called proton exchange membrane fuel cells, or PEMFCs, hydrogen is split into a proton and electron at one side of the fuel cell (the anode). The proton moves through the device while the electron is forced to travel in an external circuit, where it can perform useful work. At the other side of the fuel cell (the cathode), the protons, electrons and oxygen combine to form water, which is the only waste product.

Though the premise sounds straightforward, there are multiple hurdles to producing efficient fuel cells for widespread use. One of these hurdles is the catalyst added to aid the reaction between protons, electrons and oxygen at the cathode. Current fuel cells use platinum and platinum alloys as a catalyst. While platinum can withstand the corrosive fuel cell environment, it is expensive and not very abundant.

To maximize platinum use, researchers use catalysts made with platinum particles as small as 2 nanometers, which are approximately 10 atoms across. These tiny structures have a large surface area on which the fuel cell reaction occurs. However, platinum catalysts this small degrade very quickly.

"The stability of bulk versus nanoparticle materials can be understood intuitively by thinking of cheese," says Morgan. "When you leave a large chunk of cheese out and the edges get crusty the surface is destroyed, but you can cut that off and there is still a lot of cheese inside that is good.

"But if you crumble the cheese into tiny pieces and leave it out, you destroy all of your cheese because a larger fraction of the cheese is at the surface."

Rapid catalyst degradation means the fuel cell doesn't last long, and the U.S. Department of Energy estimates fuel cells must function for 5,000 hours, or approximately seven months of continuous use, to be practical for automotive energy solutions.

Morgan and Holby, who are working in collaboration with Professor Yang Shao-Horn from the Massachusetts Institute of Technology, have found a possible solution to the rapid degradation problem: When it comes to catalyst particle size, sometimes smaller isn't better.

Their modeling work, which is funded by 3M and the U.S. Department of Energy, shows that if the particle size of a platinum catalyst is increased to 4 or 5 nanometers, which is approximately 20 atoms across, the level of degradation significantly decreases. This means the catalyst and the fuel cell as a whole can continue to function for much longer than if the particle size was only 2 or 3 nanometers.

The research into the fundamental physics of particle size will be useful as scientists extend their platinum studies to exploring platinum alloys, which can reduce platinum consumption when used as fuel cell catalysts. Morgan is beginning to research models to study size effects on the stability of platinum alloys, such as copper-platinum and cobalt-platinum catalysts.

"Fuel cells are just one of many energy technologies-solar, battery, etc. — with enormous potential to reduce our dependence on oil and our carbon emissions," says Morgan. "Computer simulation offers a powerful tool to understand and develop new materials at the heart of these energy technologies."

####

About University of Wisconsin-Madison
The University of Wisconsin System is one of the largest systems of public higher education in the country, serving more than 175,000 students each year and employing more than 32,000 faculty and staff statewide.

For more information, please click here

Contacts:
James Beal
608/263-0611

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project