Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Smaller isn't always better: Catalyst simulations could lower fuel cell cost

Schematic of PEMFC platinum nanoparticle catalyst on graphite carbon support
Schematic of PEMFC platinum nanoparticle catalyst on graphite carbon support

Abstract:
Imagine a car that runs on hydrogen from solar power and produces water instead of carbon emissions. While vehicles like this won't be on the market anytime soon, UW-Madison researchers are making incremental but important strides in the fuel cell technology that could make clean cars a reality.

Smaller isn't always better: Catalyst simulations could lower fuel cell cost

Madison, WI | Posted on September 21st, 2009

Materials Science and Engineering Assistant Professor Dane Morgan and PhD student Edward (Ted) Holby have developed a computational model that could optimize an important component of fuel cells, making it possible for the technology to have a more widespread use. Essentially, they investigate how particle size relates to the overall stability of a material, and their model has shown that increasing the particle size of a fuel cell catalyst decreases degradation and therefore increases the useful lifetime of a fuel cell.

Fuel cells are electrochemical devices that facilitate a reaction between hydrogen and oxygen, producing electrical power and forming water. In the type of fuel cells Morgan is researching, called proton exchange membrane fuel cells, or PEMFCs, hydrogen is split into a proton and electron at one side of the fuel cell (the anode). The proton moves through the device while the electron is forced to travel in an external circuit, where it can perform useful work. At the other side of the fuel cell (the cathode), the protons, electrons and oxygen combine to form water, which is the only waste product.

Though the premise sounds straightforward, there are multiple hurdles to producing efficient fuel cells for widespread use. One of these hurdles is the catalyst added to aid the reaction between protons, electrons and oxygen at the cathode. Current fuel cells use platinum and platinum alloys as a catalyst. While platinum can withstand the corrosive fuel cell environment, it is expensive and not very abundant.

To maximize platinum use, researchers use catalysts made with platinum particles as small as 2 nanometers, which are approximately 10 atoms across. These tiny structures have a large surface area on which the fuel cell reaction occurs. However, platinum catalysts this small degrade very quickly.

"The stability of bulk versus nanoparticle materials can be understood intuitively by thinking of cheese," says Morgan. "When you leave a large chunk of cheese out and the edges get crusty the surface is destroyed, but you can cut that off and there is still a lot of cheese inside that is good.

"But if you crumble the cheese into tiny pieces and leave it out, you destroy all of your cheese because a larger fraction of the cheese is at the surface."

Rapid catalyst degradation means the fuel cell doesn't last long, and the U.S. Department of Energy estimates fuel cells must function for 5,000 hours, or approximately seven months of continuous use, to be practical for automotive energy solutions.

Morgan and Holby, who are working in collaboration with Professor Yang Shao-Horn from the Massachusetts Institute of Technology, have found a possible solution to the rapid degradation problem: When it comes to catalyst particle size, sometimes smaller isn't better.

Their modeling work, which is funded by 3M and the U.S. Department of Energy, shows that if the particle size of a platinum catalyst is increased to 4 or 5 nanometers, which is approximately 20 atoms across, the level of degradation significantly decreases. This means the catalyst and the fuel cell as a whole can continue to function for much longer than if the particle size was only 2 or 3 nanometers.

The research into the fundamental physics of particle size will be useful as scientists extend their platinum studies to exploring platinum alloys, which can reduce platinum consumption when used as fuel cell catalysts. Morgan is beginning to research models to study size effects on the stability of platinum alloys, such as copper-platinum and cobalt-platinum catalysts.

"Fuel cells are just one of many energy technologies-solar, battery, etc. — with enormous potential to reduce our dependence on oil and our carbon emissions," says Morgan. "Computer simulation offers a powerful tool to understand and develop new materials at the heart of these energy technologies."

####

About University of Wisconsin-Madison
The University of Wisconsin System is one of the largest systems of public higher education in the country, serving more than 175,000 students each year and employing more than 32,000 faculty and staff statewide.

For more information, please click here

Contacts:
James Beal
608/263-0611

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Chemistry

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Highlights for 2014 national meeting of world’s largest scientific society July 8th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Environment

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Development of an interactive tool for the implementation of environmental legislation for nanoparticles manufacturers July 4th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Automotive/Transportation

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Nanofluids Improve Performance of Automobile Radiator July 1st, 2014

Iranian Researchers Produce Protein Nanoparticles from Chicken Feather June 11th, 2014

Fuel Cells

Media Advisory: Minister Rempel to Announce Support for Alberta's Nanotechnology Sector June 20th, 2014

Evolution of a Bimetallic Nanocatalyst June 6th, 2014

University of Surrey collaborates with India and Tata Steel to revolutionise renewable energy March 26th, 2014

Novel membrane reveals water molecules will bounce off a liquid surface: Study may lead to more efficient water-desalination systems, fundamental understanding of fluid flow March 16th, 2014

Solar/Photovoltaic

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

New Study Raises Possibility of Production of P-Type Solar Cells July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE