Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > IBM Announces Industry's Densest, Fastest On-Chip Dynamic Memory in 32-Nanometer, Silicon-on-Insulator Technology: Enables improved speed, power savings and reliability for business, mobile, consumer and game applications

Abstract:
IBM (NYSE:IBM) has successfully developed a prototype of the semiconductor industry's smallest, densest and fastest on-chip dynamic memory device in next-generation, 32-nanometer, silicon-on-insulator (SOI) technology that can offer improved speed, power savings and reliability for products ranging from servers to consumer electronics.

IBM Announces Industry's Densest, Fastest On-Chip Dynamic Memory in 32-Nanometer, Silicon-on-Insulator Technology: Enables improved speed, power savings and reliability for business, mobile, consumer and game applications

EAST FISHKILL, NY | Posted on September 18th, 2009

IBM's SOI technology can provide up to a 30 percent chip performance improvement and 40 percent power reduction, compared to standard bulk silicon technology. SOI protects the transistors on the chip with a "blanket" of insulation that reduces electrical leakage, saving power and allowing current to flow through the circuit more efficiently, improving performance.

IBM has fabricated a test chip with an embedded dynamic random access memory (eDRAM) technology that features the industry's smallest memory cell, and offers density, speed and capacity better than conventional on-chip static random access memory (SRAM) announced in 32nm and 22nm technology, and comparable to what would be expected of an SRAM produced in 15-nanometer technology - three technology generations ahead of chips in volume production today.

IBM's eDRAM cell is twice as dense as any announced 22nm embedded SRAM cell - including the world's smallest 22-nanometer memory cell announced by IBM in August 2008 - and up to four times as dense as any comparable 32nm embedded SRAM in the industry. Higher memory density can lead to chips that are smaller, more efficient and can process more data, improving system performance.

The IBM eDRAM in 32nm SOI technology is the fastest embedded memory announced to date, achieving latency and cycle times of less than 2 nanoseconds. In addition, the IBM eDRAM uses four times less standby power (power used by the chip as it sits idle) and has up to a thousand times lower soft-error rate (errors caused by electrical charges), offering better power savings and reliability compared to a similar SRAM.

Embedded memory is a key performance enabler for multi-core processors and other integrated circuits, and the new prototype has numerous implications for businesses and other organizations around the globe. For example, use of this technology in high-performance server, printer, storage and networking applications can result in improved system performance and energy savings. In mobile, consumer and game applications, it can result in a smaller system form-factor, lower-cost and energy savings.

IBM intends to bring the benefits of its 32-nanometer SOI technology to a wide range of application-specific integrated circuit (ASIC) and foundry clients and will use the technology in chips for its servers.

IBM already is engaged with early access foundry clients in 32nm technology and ARM is developing design libraries for the technology. An initial 32nm ARM library is available now and IBM has extended this collaboration to include 22nm SOI technology, enabling ARM to gain early access to this technology. This represents the two companies' commitment to align early on process technology, design rules, design library and cores for next-generation SOI technology.

"We are making this 32nm offering available to clients who are ready to benefit from the significant performance and power advantages of this seventh generation of IBM SOI technology," said Gary Patton, vice president for IBM's Semiconductor Research and Development Center. "The industry-leading, dense embedded memory, and our design library agreement with ARM, underscore our ability to provide clients with a market edge and a clear progression path to 32nm and 22nm SOI technology nodes."

IBM engineers plan to describe the features of the 32nm and 22nm eDRAM at the International Electron Devices Meeting in December.

IBM was the first company to begin commercially shipping SOI technology, which has been used in applications from game consoles to servers. The 32nm SOI technology offering represents IBM's continued commitment and expertise in research, development and manufacturing for next-generation technology.

IBM is a member of the SOI Industry Consortium, an international group aimed at accelerating broad adoption of SOI technology across semiconductor markets, and is working through the Consortium on enabling a robust intellectual property portfolio for a wide range of applications.

####

About IBM Corporation
For more information about IBM's semiconductor products and services, visit www.ibm.com/technology.

About SOI technology: To learn more about the benefits of silicon-on-insulator technology, visit www.soiconsortium.org

For more information, please click here

Contacts:
Jeff Couture
IBM Media Relations
802-769-2483

Copyright © IBM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Chip Technology

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Nanoelectronics

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project