Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Using magnetism to turn drugs on and off

Abstract:
Many medical conditions, such as chronic pain, cancer and diabetes, require medications that cannot be taken orally, but must be dosed intermittently, on an as-needed basis, over a long period of time. A few delivery techniques have been developed, using an implanted heat source, an implanted electronic chip or other stimuli as an "on-off" switch to release the drugs into the body. But thus far, none of these methods can reliably do all that's needed: repeatedly turn dosing on and off, deliver consistent doses and adjust doses according to the patient's need.

Using magnetism to turn drugs on and off

Boston, MA | Posted on September 18th, 2009

Researchers led by Daniel Kohane, MD, PhD of Children's Hospital Boston, funded by the National Institutes of Health, have devised a solution that combines magnetism with nanotechnology.



The team created a small implantable device, less than ˝" in diameter, that encapsulates the drug in a specially engineered membrane, embedded with nanoparticles (approximately 1/100,000 the width of a human hair) composed of magnetite, a mineral with natural magnetic properties. When a magnetic field is switched on outside the body, near the device, the nanoparticles heat up, causing the gels in the membrane to warm and temporarily collapse. This opens up pores that allow the drug to pass through and into the body. When the magnetic force is turned off, the membranes cool and the gels re-expand, closing the pores back up and halting drug delivery. No implanted electronics are required.



The device, which Kohane's team is continuing to develop for clinical use, is described in the journal Nano Letters (published online September 8, DOI: 10.1021/nl9018935).



"A device of this kind would allow patients or their physicians to determine exactly when drugs are delivered, and in what quantities," says Kohane, who directs the Laboratory for Biomaterials and Drug Delivery in the Department of Anesthesiology at Children's.



In animal experiments, the membranes remained functional over multiple cycles. The size of the dose was controllable by the duration of the "on" pulse, and the rate of release remained steady, even 45 days after implantation.



Testing indicated that drug delivery could be turned on with only a 1 to 2 minute time lag before drug release, and turned off with a 5 to 10 minute time lag. The membranes remained mechanically stable under tensile and compression testing, indicating their durability, showed no toxicity to cells, and were not rejected by the animals' immune systems. They are activated by temperatures higher than normal body temperatures, so would not be affected by the heat of a patient's fever or inflammation.



"This novel approach to drug delivery using engineered 'smart' nanoparticles appears to overcome a number of limitations facing current methods of delivering medicines," says Alison Cole, Ph.D., who oversees anesthesia grants at the National Institutes of Health's National Institute of General Medical Sciences (NIGMS). "While some distance away from use in humans, this technology has the potential to provide precise, repeated, long-term, on-demand delivery of drugs for a number of medical applications, including the management of pain."



The study was funded by the NIGMS. The article can be accessed at pubs.acs.org/doi/abs/10.1021/nl9018935?prevSearch=%255Bauthor%253A%2BKohane%255D&searchHistoryKey .

####

About Children’s Hospital Boston
Founded in 1869 as a 20-bed hospital for children, Children’s Hospital Boston today is one of the nation’s leading pediatric medical centers, the primary pediatric teaching hospital of Harvard Medical School, and the largest provider of health care to Massachusetts children. In addition to 396 pediatric and adolescent inpatient beds and more than 225 outpatient programs, Children’s houses the world’s largest research enterprise based at a pediatric medical center, where its discoveries benefit both children and adults. More than 1,100 scientists, including nine members of the National Academy of Sciences, 13 members of the Institute of Medicine and 15 members of the Howard Hughes Medical Institute comprise Children’s research community.

For more information, please click here

Contacts:
James Newton
Children's Hospital Boston
617-919-3110


Alisa Zapp Machalek
National Insituties of Health
301-496-7301

Copyright © Children's Hospital Boston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Nanomedicine

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Discoveries

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Announcements

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project