Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Friction Differences Offer New Means for Manipulating Nanotubes

Images compare an AFM tip sliding longitudinally along a carbon nanotube (left) versus sliding in the transverse direction. (Image: Christian Klinke, University of Hamburg)
Images compare an AFM tip sliding longitudinally along a carbon nanotube (left) versus sliding in the transverse direction. (Image: Christian Klinke, University of Hamburg)

Abstract:
Nanotubes and nanowires are promising building blocks for future integrated nanoelectronic and photonic circuits, nanosensors, interconnects and electro-mechanical nanodevices. But some fundamental issues remain to be resolved—among them, how to position and manipulate the tiny tubes.

Friction Differences Offer New Means for Manipulating Nanotubes

Atlanta, GA | Posted on September 17th, 2009

Publishing in the journal Nature Materials this week, researchers from four different institutions report measuring different friction forces when a carbon nanotube slides along its axis compared to when it slides perpendicular to its axis. This friction difference has its origins in soft lateral distortion of the tubes when they slide in the transverse direction.

The findings not only could provide a better understanding of fundamental friction issues, but from a more practical standpoint, offer a new tool for assembling nanotubes into devices and clarify the forces acting on them. Asymmetries in the friction could potentially also be used in sorting nanotubes according to their chirality, a property that is now difficult to measure with other means.

When an atomic force microscope (AFM) tip is scanned transversely across a multi-walled carbon nanotube, the amount of friction measured is twice as much as when the same tube is scanned longitudinally, along the length of the tube. The researchers attribute this difference to what they call "hindered rolling"—additional effort required to overcome the nanotube's tendency to roll as the AFM tip strokes across it rather than along it.

"Because the energy required to move in one direction is twice as much as required to move in the other direction, this could be an easy way to control the assembly of carbon nanotubes for nanoelectronics, sensors and other applications," said Elisa Riedo, co-author of the study and an associate professor in the School of Physics at the Georgia Institute of Technology. "To assemble nanotubes on a surface, you need to know how they interact and what force is needed to move them."

The combined theoretical and experimental study was supported by the U.S. Department of Energy. Other institutions contributing to the project include the International Centre for Theoretical Physics, International School for Advanced Studies and CNR Democritos Laboratory—all in Trieste, Italy—and the University of Hamburg in Germany. The paper was published in advance online on September 13 by the journal Nature Materials.

Carbon nanotubes have exceptional thermal, mechanical and electrical properties that have generated considerable interest since they were first reported in 1991. Though friction has been studied before in nanotubes, this research is the first to provide detailed information about the frictional forces at work in both the longitudinal and transverse directions when the tubes interact with an AFM tip.

Friction is one of the oldest problems in physics and one of the most important to everyday life. It is estimated that the losses in the U.S. economy due to friction total about 6 percent of the gross national product. Friction is even more important to micro-electromechanical systems (MEMS) and nanoscale devices because these smaller systems are more affected by surface forces than large systems.

"As systems become smaller and smaller, it becomes more important to understand how to address friction," said Riedo. "Surface forces can prevent micro and nano systems from operating at all."

Experimentally, the researchers scanned an atomic force microscope tip longitudinally along a series of multiwalled carbon nanotubes held stationary on a substrate. They also conducted a series of similar scans in the transverse direction. The researchers applied a consistent force on the AFM tip in both scanning directions, and relied on powerful Van der Waals forces to hold tubes in place on the substrate.

"When you scan a nanotube transversely, you are probing something very different," said Riedo. "You are also probing additional dissipation modes due to a kind of swaying motion in which energy is also dissipated through movement of the nanotube as it alters its cross section."

The experiment showed that greater forces were required to move the tip in the transverse direction. Using molecular dynamics simulations, collaborators Erio Tosatti and Xiaohua Zhang at the International Centre for Theoretical Physics, International School for Advanced Studies and CNR Democritos Laboratory analyzed the phenomenon to understand what was happening.

"In principle, there seems to be no reason why the frictional forces required to move the AFM tip would be different in one direction," Riedo noted. "But the theory confirmed that this ‘hindered rolling' and soft mode movement of the nanotubes are the sources of the higher friction when the tip moves transversely."

Because the nanotube-tip system is so simple, it offers an ideal platform for studying basic friction principles, which are important to all moving systems.

"This kind of system gives you the opportunity to explore friction using an ideal experiment so you can really probe the energy dissipation mechanism," Riedo explained. "The system is so simple that you can distinguish between the dissipation mechanisms, which you can't usually do well in macro-scale systems."

Based on the molecular dynamics simulations, Riedo and Tosatti believe that the friction anisotropy will be very different in chiral nanotubes versus non-chiral—left-to-right symmetric—nanotubes.

"Because of the chirality, the tip moves in a screw-like fashion, creating hindered rolling even for longitudinal sliding," Tosatti said. "Thus, the new measuring technique may suggest a simple way to sort the nanotubes; among the next steps in the research will be to show experimentally that this can be done."

In addition to the researchers already mentioned, co-authors for this paper include Christian Klinke at the Institute of Physical Chemistry at the University of Hamburg, and Marcel Lucas and Ismael Palaci at Georgia Tech.

"Understanding the basic mechanism of friction in carbon nanotubes will help us in designing devices with them in the future," Riedo added. "We have shown an anisotropy in the friction coefficient of carbon nanotubes in the transverse and longitudinal directions, which has its origin in the soft lateral distortion of tubes when the tip-tube contact is moving in the transverse direction. Our findings could help in developing better strategies for chirality sorting, large-scale self-assembling of nanotubes on surfaces, and designing nanotube adhesives and nanotube-polymer composite materials."

####

About Georgia Tech
The Georgia Institute of Technology is one of the nation's premier research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 19,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

Media Relations Contacts:
John Toon
404-894-6986

or
Abby Vogel
404-385-3364

Copyright © Georgia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Elisa Riedo

School of Physics

Related News Press

News and information

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Nanotubes/Buckyballs/Fullerenes

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Sensors

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

Nanoelectronics

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Discoveries

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Announcements

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Photonics/Optics/Lasers

Method improves semiconductor fiber optics, paves way for developing devices April 16th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Photonics breakthough paving the way for improved wireless communication systems: The work could bolster the wireless revolution underway with efficiencies several orders of magnitude April 5th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project