Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Putting a strain on nanowire could yield colossal results

These optical images of a multiple-domain vanadium oxide microwire taken at various temperatures show pure insulating (top) and pure metallic (bottom) phases and co-existing metallic/insulating phases (middle) as a result of strain engineering. (Image from Junqiao Wu)
These optical images of a multiple-domain vanadium oxide microwire taken at various temperatures show pure insulating (top) and pure metallic (bottom) phases and co-existing metallic/insulating phases (middle) as a result of strain engineering. (Image from Junqiao Wu)

Abstract:
In finally answering an elusive scientific question, researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have shown that the selective placement of strain can alter the electronic phase and its spatial arrangement in correlated electron materials.

Putting a strain on nanowire could yield colossal results

Berkeley, CA | Posted on September 16th, 2009

This unique class of materials is commanding much attention now because they can display properties such as colossal magnetoresistance and high-temperature superconductivity, which are highly coveted by the high-tech industry.

Junqiao Wu, a physicist who holds joint appointments with Berkeley Lab's Materials Sciences Division and the University of California-Berkeley's Department of Materials Science and Engineering, led the study in which it was demonstrated that irregularities in the micro-domain structure of correlated electron materials - a phenomenon known as "phase inhomogeneity" - can be generated by external stimuli and could be engineered at the sub-micron scale to achieve desired properties.

"By continuously tuning strain over a wide range in single-crystal vanadium oxide micro- and nano-scale wires, we were able to engineer phase inhomogeneity along the wires," says Wu. "Our results shed light on the origin of phase inhomogeneity in correlated electron materials in general, and open opportunities for designing and controlling phase inhomogeneity of correlated electron materials for future devices."

Wu is the corresponding author of a paper describing this work which was published in the journal Nature Nanotechnology and is entitled: "Strain engineering and one-dimensional organization of metal-insulator domains in single crystal VO2 beams." Co-authoring the paper with Wu were Jinbo Cao, Elif Ertekin, Varadharajan Srinivasan, Wen Fan, Simon Huang, Haimei Zheng, Joanne Yim, Devesh Khanal, Frank Ogletree and Jeffrey Grossman.

Whereas in conventional materials, the motion of one electron is relatively independent of any other, in "correlated electron materials" quantum effects enable electrons to act collectively, like dancers in a chorus line. Emerging from this collective electronic behavior are properties such as colossal magnetoresistance, where the presence of a magnetic field increases electrical resistance by orders of magnitude, or high-temperature superconductivity, in which the materials lose all electrical resistance at temperatures much higher than conventional superconductors.

Frequently observed spatial phase inhomogeneities are believed to be critical to the collective electronic behavior of correlated electron materials. However, despite decades of investigation, the question of whether such phase inhomogeneities are intrinsic to correlated electron materials or caused by external stimuli has remained largely unanswered.

"This question is not only important for our understanding of the physics behind correlated electron materials," says Wu, "it also directly determines the spatial scale of correlated electron material device applications."

To determine if phase inhomogeneity can be caused by external effects, Wu and his colleagues worked with vanadium oxide, a representative correlated electron material that features a metal-nonmetal transition, where in the nonmetal state its electrons can no longer carry an electrical current. After synthesizing the vanadium oxide into flexible single-crystal micro- and nanowires, the research team subjected the wires to strain by bending them to different curvatures. Different curvatures yielded different strains, and the phase transitions were measured in each of the strained areas.

"The metal-nonmetal domain structure was determined by competition between elastic deformation, thermodynamic and domain wall energies in this coherently strained system," says Wu. "A uniaxial compressive strain of approximately 1.9-percent was able to drive the metal-nonmetal transition at room temperature."

The ability to fabricate single-crystal micro- and nanowires of vanadium oxide that were free of structural defects made it possible to apply such high strain without plastic deformation or fracturing of the material, Wu says. Bulk and even thin film samples of vanadium oxide cannot tolerate a strain of even one-percent without suffering dislocations.

Wu says that in the future strain engineering might be achieved by interfacing a correlated electron material such as vanadium oxide with a piezoelectric - a non-conducting material that creates a stress or strain in response to an electric field.

"By applying an electric field, the piezoelectric material would strain the correlated electron material to achieve a phase transition that would give us the desired functionality," says Wu. "To reach this capability, however, we will first need to design and synthesize such integrated structures with good material quality."

This work was supported in part by Berkeley Lab through its Laboratory Directed Research and Development Program, and in part by a grant from the National Science Foundation.

####

About Berkeley Lab:
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Physics

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

'Perfect Liquid' Quark-Gluon Plasma is the Most Vortical Fluid: Swirling soup of matter's fundamental building blocks spins ten billion trillion times faster than the most powerful tornado, setting new record for "vorticity" August 4th, 2017

The first light atomic nucleus with a second face July 20th, 2017

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Possible Futures

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Landscapes give latitude to 2-D material designers: Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects August 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project