Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Deakin researchers make the extra small, extra strong

Abstract:
Being able to swing through the air like Spiderman on strands of ‘spider silk' may be one step—or swing—closer with researchers at Deakin University discovering a way to strengthen plastic nanofibres, ultra-fine fibres much thinner than a human hair, with one of the world's strongest materials, carbon.

Deakin researchers make the extra small, extra strong

Melbourne | Posted on September 14th, 2009

Deakin postdoctoral research fellow Dr Minoo Naebe, whose PhD research resulted in the discovery, said the added strength could open up the plastic, or polymer, nanofibres to new uses.

"Although polymer nanofibres have a certain strength, they have not been strong enough for some potential applications. Our research looked at how carbon nanotubes—tiny graphite tubes which are one of the strongest materials ever discovered—could be used to strengthen polymer nanofibres.

"Polymer nanofibres are created through a process called electrospinning, which uses an electrical charge to draw very fine fibres from a liquid, in this case polymer solution. The idea was that if the polymer could form a shell, or crystallise, around the carbon nanotube, it would strengthen the nanofibre. Electrospinning is a very fast process and at first we thought it may be too rapid for the polymer to crystallise around the carbon nanotubes. But, in what we believe is a world-first, our research showed that crystallisation happens within fast-drawn polymer nanofibres," she said.

Dr Naebe believes the ultra-fine nanofibres have the potential to change our lives.

"I think polymer nanofibre technology, like the internet, will revolutionise the way we live. It has the potential to improve technologies in medicine, energy, security, the environment and more. Tiny, powerful batteries; clothing that protects against chemical and biological hazards; filters to purify air; tissue scaffold implants to help repair injuries—all of these are potential nanofibre applications."

Some of the potential applications Dr Naebe describes seem more exotic than others.

"Who knows, perhaps one day nanofibres strengthened with carbon nanotubes will help real ‘spider' men to soar!"

The Deakin researchers also discovered techniques for achieving additional strength.

"We found that nanofibre strength is increased even further through simple post-manufacture treatments like soaking nanofibres reinforced with carbon nanotubes in alcohol, making the nanofibres 400 per cent stronger than previously possible," Dr Naebe said.

She said the research has been well-received by the scientific community.

"We have received positive feedback from international scientists regarding the light this research sheds on the interaction between the nanotubes and the host polymer and its potential to assist others to develop more effective carbon nanotube composite nanofibres."

####

About Deakin University
Established in the 1970s as one of the new generation of Australian universities, Deakin combines a university's traditional focus on excellent teaching and research with a desire to seek new ways of developing and delivering courses.

Deakin has recently been commended with nine Citations for Outstanding Contributions to Student Learning in the 2007 Carrick Awards (now the Australian Learning and Teaching Council awards).

For more information, please click here

Contacts:
Media contact
Vanessa Barber
Deakin Media Relations
03 5227 1301
0488 292 644

Copyright © Deakin University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Possible Futures

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Nanomedicine

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Announcements

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Homeland Security

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Nanoporous material's strange "breathing" behavior April 7th, 2016

Sniffing out a dangerous vapor: University of Utah engineers develop material that can sense fuel leaks and fuel-based explosives March 28th, 2016

Detecting and identifying explosives with single test December 10th, 2015

Military

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Environment

The use of nanoparticles and bioremediation to decontaminate polluted soils June 14th, 2016

UQ research accelerates next-generation ultra-precise sensing technology June 10th, 2016

VentureLab nanotechnology startup wins TechConnect Innovation Award June 2nd, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Energy

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Textiles/Clothing

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

No more washing: Nano-enhanced textiles clean themselves with light: New technique to grow nanostructures that degrade organic matter when exposed to light March 23rd, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Stanford researchers find new ways to make clean hydrogen and rechargable zinc batteries June 18th, 2016

Efficient hydrogen production made easy: Sticking electrons to a semiconductor with hydrazine creates an electrocatalyst June 17th, 2016

Nanobiotechnology

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic