Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New biosensor can detect bacteria instantaneously

Within the system with carbon nanotubes, the aptamers (red) bind to the bacteria (green), which activates a measurable electrical signal that reveals the presence of the pathogen.
Within the system with carbon nanotubes, the aptamers (red) bind to the bacteria (green), which activates a measurable electrical signal that reveals the presence of the pathogen.

Abstract:
A research group from the Rovira i Virgili University (URV) in Tarragona has developed a biosensor that can immediately detect very low levels of Salmonella typhi, the bacteria that causes typhoid fever. The technique uses carbon nanotubes and synthetic DNA fragments that activate an electric signal when they link up with the pathogen.

New biosensor can detect bacteria instantaneously

Spain | Posted on September 11th, 2009

"We have developed a new biosensor that can detect extremely low concentrations of bacteria immediately, easily and reliably", F. Xavier Rius, lead author of the study and a professor in the Chemometrics, Qualimetrics and Nanosensors research group in the Analytical Chemistry and Organic Chemistry Department of the URV, tells SINC.

Rius' team, jointly led by Jordi Riu, has come up with a technique that can detect extremely low levels of the bacteria Salmonella typhi, which causes typhoid fever. This new biosensor functions using a method, described this month in the scientific journal Angewandte Chemie International Edition, which involves carbon nanotubes with inbuilt aptamers providing electrochemical readings.

The aptamers are small fragments of artificial DNA or RNA designed to attach themselves specifically to a particular molecule, cell or micro organism, in this case Salmonella. If the bacteria are not present, the aptamers remain on the walls of the carbon nanotubes. However, if they detect bacteria, they become activated and stick to it, and the carbon nanotubes generate an electric signal that is picked up by a simple potentiometer connected to the biosensor.

"The presence of the bacteria sparks a change in the interaction between the aptamers and the nanotubes, which takes place in a few seconds and creates an increase in the voltage of the electrode", says Rius.

Traditional methods for identifying and measuring micro organisms require one or two days' analysis. "This technique means small quantities of micro organisms can be detected simply and practically in real time, just the same as measuring the pH of water", adds the researcher.

This study is part of the international research being carried out to find the most effective and fast ways of detecting all kinds of pathogens. The new biosensor makes it possible to identify a single cell of Salmonella in a five-millilitre sample and can successfully make quantitative measurements of up to 1,000 bacteria per millilitre.

References:

Gustavo A. Zelada-Guillén, Jordi Riu, Ali Düzgün, F. Xavier Rius. "Immediate Detection of Living Bacteria at Ultralow Concentrations Using a Carbon Nanotube Based Potentiometric Aptasensor". Angewandte Chemie International Edition, Septiembre de 2009. DOI: 10.1002/anie.200902090.

####

About FECYT - Spanish Foundation for Science and Technology
The Spanish Science and Technology Foundation (FECYT), dependent organisation on Ministry of Science and Innovation, was born in 2001 as a tool of the national system of knowledge generation and technological transfer. The Foundation operates as a non-profit private association and with functional autonomy, with the goal of rendering a continuous and flexible service to the Spanish system of science-technology-enterprise.

For more information, please click here

Contacts:
SINC

34-914-251-820

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Synthetic Biology

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Possible Futures

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Sensors

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Announcements

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Homeland Security

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Military

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nano-lipid particles from edible ginger could improve drug delivery for colon cancer, study finds September 8th, 2016

3-D graphene has promise for bio applications: Rice University-led team welds nanoscale sheets to form tough, porous material September 7th, 2016

Nanodiamonds in an instant: Rice University-led team morphs nanotubes into tougher carbon for spacecraft, satellites September 6th, 2016

Nanobiotechnology

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic