Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > EU-funded scientists achieve new state in quantum physics

Abstract:
EU-funded researchers in Austria investigating ultracold atomic physics have generated an exotic state wherein atoms are aligned in a one-dimensional structure, creating a stable 'many-body phase' with new quantum mechanical states. Their findings, published in the journal Science, open up a new area of study in quantum physics.

EU-funded scientists achieve new state in quantum physics

EU | Posted on September 9th, 2009

The results were an outcome of the NAME-QUAM ('Nanodesigning of atomic and molecular quantum matter') project, funded with EUR 2 million through the 'Information and communication technologies' Theme of the Seventh Framework Programme (FP7). NAME-QUAM partners study ultracold atom and molecule quantum-matter technology with the goal of identifying new directions and alternative approaches towards scalable and miniaturisable quantum information processing.

In the specialised area of 'many-body quantum physics,' scientists have observed a dramatic amplification of the effects of quantum fluctuations when the interactions between particles are strong and the geometry of the system is simple. Well-known examples include zero-dimensional quantum dots and one-dimensional quantum wires. However, achieving such an excited-state phase that is also long-lived is experimentally difficult because the systems quickly decay, partly as a result of 'coupling' with the environment.

In this latest research, the team, led by Hanns-Christoph Naegerl of the University of Innsbruck in Austria, recognised the potential of using ultracold atoms to generate a long-lived, strongly interacting, excited, many-body phase. Cold atoms can easily decouple from the environment, they reasoned, and their interactions are 'tunable'.

'Ultracold quantum gases offer a big advantage: they can be isolated against the environment quite well,' said Dr Naegerl.

Bosons are particles that can occupy the same quantum state; in other words, bosons with the same energy can occupy the same place in space. Bosons that have been observed experimentally include photons, which are force carriers of the electromagnetic field, and gluons, which are force carriers underlying the strong nuclear force.

The researchers produced a quantum gas made up of bosonic caesium atoms in a vacuum chamber. Then, they generated an optical lattice using two laser beams; the lattice confined the atoms to vertical, one-dimensional structures with up to 15 atoms aligned in each 'tube'. The laser beams prevented the atoms from shifting out of line or changing places. Once this was achieved, the scientists used a magnetic field to tune the interaction among the atoms.

'By increasing the interaction energy between the atoms (attraction interaction), the atoms start coming together and the structure quickly decays,' explained Dr Naegerl. This is called the 'Bosenova effect'. When the interaction energy is minimised, the atoms are able to repel instead of attract each other; this allows them to align vertically and regularly along a one-dimensional structure. The resulting system is stable.

The researchers observed a surprising effect when the interactions were switched from strongly repulsive to strongly attractive. They achieved 'an exotic, gas-like phase, where the atoms are excited and correlated but do not come together and the 'Bosenova effect' is absent', said Dr Naegerl.

According to co-investigator Elmar Haller of the University of Innsbruck, the phase was predicted four years ago. 'We have now been able to realise it experimentally for the first time,' he stated.

The experimental setup will be used in future studies to investigate the properties of quantum wires, which have until now been extremely difficult to observe. Further research on low-dimensional structures may also shed light on the functioning of high-temperature superconductors.

The study received support from the European Science Foundation's EuroQUASAR ('Funding initiative for multidisciplinary research in the field of quantum standards and metrology') programme through the collective research project 'Quantum-degenerate gases for precision measurements'. One of the researchers was also supported by an FP7 Marie Curie international incoming fellowship.

For more information, please visit:

University of Innsbruck: www.uibk.ac.at/

Science: www.sciencemag.org/

####

About CORDIS
CORDIS, the Community Research and Development Information Service for Science, Research and Development, is the official source of information on the seventh framework programme (FP7) calls for proposals; it offers interactive web facilities that links together researchers, policymakers, managers and key players in the field of research.

For more information, please click here

Contacts:
European Commission
Directorate-General for Research
Directorate G - Industrial Technologies
Office CDMA 6/112
Attn: Jesús Alquézar
B-1049 Brussels
Tel. +32 2 295 1167
Fax +32 2 296 7023

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Malvern reports on the publication of the 1000th peer-reviewed paper to cite NanoSight’s Nanoparticle Tracking Analysis, NTA April 16th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Physics

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

First principles approach to creating new materials: Solid-state chemistry and theoretical physics combined to help discover new materials with useful properties April 8th, 2014

Quantum Photon Properties Revealed in Another Particle—the Plasmon April 5th, 2014

Drexel Researchers Open Path to Finding Rare, Polarized Metals April 2nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Quantum Computing

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Rainbow-catching waveguide could revolutionize energy technologies: By slowing and absorbing certain wavelengths of light, engineers open new possibilities in solar power, thermal energy recycling and stealth technology March 28th, 2014

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Waterloo, Technion Partner to Advance Research, Commercialization March 19th, 2014

Announcements

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Malvern reports on the publication of the 1000th peer-reviewed paper to cite NanoSight’s Nanoparticle Tracking Analysis, NTA April 16th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Quantum nanoscience

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Quantum Photon Properties Revealed in Another Particle—the Plasmon April 5th, 2014

Notre Dame researchers provide new insights into quantum dynamics and quantum chaos April 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE