Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > IBM Scientists Effectively Eliminate Wear at the Nanoscale

Scanning electron micrograph showing no measurable mechanical wear in a vibrating nanotip sliding 750-meters over a polymer surface. The tip measures 500 nanometers in length and only 5 nanometers at its apex. On the left is the original tip, on the right the same tip after the 750-meter wear test. The red line shows the outline of the original tip shape overlayed on an image taken at the end of the experiment. The key to success: A small almost imperceptible vibration of the tip. 

Image courtesy of IBM Research - Zurich
Scanning electron micrograph showing no measurable mechanical wear in a vibrating nanotip sliding 750-meters over a polymer surface. The tip measures 500 nanometers in length and only 5 nanometers at its apex. On the left is the original tip, on the right the same tip after the 750-meter wear test. The red line shows the outline of the original tip shape overlayed on an image taken at the end of the experiment. The key to success: A small almost imperceptible vibration of the tip. Image courtesy of IBM Research - Zurich

Abstract:
Results could lead to new high-precision and high-quality nanomechanical tools in nanofabrication and in the development of next-generations chips

IBM Scientists Effectively Eliminate Wear at the Nanoscale

Zurich, Switzerland | Posted on September 8th, 2009

IBM (NYSE: IBM) scientists have demonstrated a promising and practical method that effectively eliminates the mechanical wear in the nanometer-sharp tips used in scanning probe-based techniques. This discovery can potentially be used in the development of next generation, more advanced computer chips that have higher performance and smaller feature sizes. Scanning probe-based tools could be one approach to extend the capabilities, quality and precision beyond the projected limits of current production and characterization tools.

Scanning probe-based techniques utilize tiny, nanometer-sharp tips borrowed from atomic force microscopy to manipulate nanostructures and devices by scanning or rather sliding in very close proximity over the surface—similar to the way the needle of a record player on a record. Today, these techniques—including for example the well-known atomic force microscope—are established tools for scientists to explore the nanocosmos. Scanning-probe techniques today allow for the highest possible resolution down to the atomic or molecular scale and represent essentially the scientists' "eyes", "ears", "nose", and "hands" as they explore the smallest objects known to mankind.

In the semiconductor industry, these techniques due to their atomic resolution and manipulation capabilities become increasingly attractive for use in the development and manufacturing of next generation chips with ultra-small feature sizes. While small by most standards, today's 40 nm transistors can still shrink further, but it becomes increasingly challenging and costly since the current tools and methods to develop and process the chips out of silicon wafers approach physical limitations for critical chip layers.

"Continued scaling to further increase device performance will require new device architectures, smaller feature sizes and new materials. Tools based on scanning probe technology could become essential for the metrology of future technology nodes as well as for the development, fabrication and characterization of novel nanoscale devices," says IBM Fellow Evangelos Eleftheriou of IBM Research - Zurich.

A key limiting factor for the prospects of large-scale industrial uses of such techniques, however, has been mechanical wear of the sharp tips. Wear resulting from friction between moving parts are inherent to all mechanical processes on the macro- as well as on the nanometer-scale. However, for scanning probe-based technologies, which rely on a nanometer-sharp tip—measuring just five nanometers at its apex—this problem is accentuated. A few cubic nanometers more or less can ruin the sensitivity of the tip. "In future industrial applications such as large area characterization of the features on a silicon wafer, a tip would need to be able to slide tens of kilometers or miles without replacement," explains IBM scientist Mark Lantz. In the currently used scanning modes, the tip wears out after a few meters or yards. "Moreover, in addition to causing wear of the tip, friction can potentially also do damage to the surface being characterized."

In their paper, published in the September issue of Nature Nanotechnology, IBM scientists solve this challenge by "demonstrating the effective elimination of wear on a tip sliding on a polymer surface over a distance of 750 meters by modulating the force acting on the tip-sample contact." By applying an AC voltage between the cantilever—the mechanical arms on which the tips are attached and over which they are controlled—and the sample surface, the cantilever can be excited at high frequencies of one Megahertz. The cantilever bends and the tip vibrates with an almost imperceptible estimated amplitude of one nanometer. "Though vanishingly small, it is this vibration that greatly reduces friction and "effectively" eliminates—to below the detection limit corresponding to the remarkable low number of losing one atom per meter—tip wear under experimental conditions," states Bernd Gotsmann of IBM Research - Zurich. After the 750-meter wear test, which took a week of continuous operation, the tip was still operating flawlessly.

With the wear problem tackled, researchers at IBM Research - Zurich are now investigating a number of possible applications of scanning probe-based technologies including nanofabrication, nanolithography and high-speed metrology. Operating a large number of tips in parallel would enable, high-throughput, high-speed, automated metrology systems for potential use in chip development and manufacturing. Such metrology systems could characterize device dimensions or identify defects on the structured silicon wafers with much higher precision and accuracy and potentially lower cost than currently available tools. Scientists at IBM Research - Zurich are also investigating powerful scanning probe-based method for high speed patterning of complex two and three-dimensional nanoscale structures.

The scientific paper entitled "Dynamic Superlubricity and the Elimination of Wear on the Nanoscale" by M.A. Lantz, D. Wiesmann, and B. Gotsmann, is published in Nature Nanotechnology, Volume 4, Issue 9 (September 2009).

####

For more information, please click here

Contacts:
Nicole Herfurth
Media Relations
IBM Research GmbH
IBM Research - Zurich
Säumerstrasse 4
8803 Rüschlikon
Switzerland

Tel +41 44 724 8445
Fax +41 44 724 8952

Copyright © http://www.zurich.ibm.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Possible Futures

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Nanoelectronics

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Discoveries

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

Announcements

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Tools

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project