Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > IBM Scientists Effectively Eliminate Wear at the Nanoscale

Scanning electron micrograph showing no measurable mechanical wear in a vibrating nanotip sliding 750-meters over a polymer surface. The tip measures 500 nanometers in length and only 5 nanometers at its apex. On the left is the original tip, on the right the same tip after the 750-meter wear test. The red line shows the outline of the original tip shape overlayed on an image taken at the end of the experiment. The key to success: A small almost imperceptible vibration of the tip. 

Image courtesy of IBM Research - Zurich
Scanning electron micrograph showing no measurable mechanical wear in a vibrating nanotip sliding 750-meters over a polymer surface. The tip measures 500 nanometers in length and only 5 nanometers at its apex. On the left is the original tip, on the right the same tip after the 750-meter wear test. The red line shows the outline of the original tip shape overlayed on an image taken at the end of the experiment. The key to success: A small almost imperceptible vibration of the tip. Image courtesy of IBM Research - Zurich

Abstract:
Results could lead to new high-precision and high-quality nanomechanical tools in nanofabrication and in the development of next-generations chips

IBM Scientists Effectively Eliminate Wear at the Nanoscale

Zurich, Switzerland | Posted on September 8th, 2009

IBM (NYSE: IBM) scientists have demonstrated a promising and practical method that effectively eliminates the mechanical wear in the nanometer-sharp tips used in scanning probe-based techniques. This discovery can potentially be used in the development of next generation, more advanced computer chips that have higher performance and smaller feature sizes. Scanning probe-based tools could be one approach to extend the capabilities, quality and precision beyond the projected limits of current production and characterization tools.

Scanning probe-based techniques utilize tiny, nanometer-sharp tips borrowed from atomic force microscopy to manipulate nanostructures and devices by scanning or rather sliding in very close proximity over the surface—similar to the way the needle of a record player on a record. Today, these techniques—including for example the well-known atomic force microscope—are established tools for scientists to explore the nanocosmos. Scanning-probe techniques today allow for the highest possible resolution down to the atomic or molecular scale and represent essentially the scientists' "eyes", "ears", "nose", and "hands" as they explore the smallest objects known to mankind.

In the semiconductor industry, these techniques due to their atomic resolution and manipulation capabilities become increasingly attractive for use in the development and manufacturing of next generation chips with ultra-small feature sizes. While small by most standards, today's 40 nm transistors can still shrink further, but it becomes increasingly challenging and costly since the current tools and methods to develop and process the chips out of silicon wafers approach physical limitations for critical chip layers.

"Continued scaling to further increase device performance will require new device architectures, smaller feature sizes and new materials. Tools based on scanning probe technology could become essential for the metrology of future technology nodes as well as for the development, fabrication and characterization of novel nanoscale devices," says IBM Fellow Evangelos Eleftheriou of IBM Research - Zurich.

A key limiting factor for the prospects of large-scale industrial uses of such techniques, however, has been mechanical wear of the sharp tips. Wear resulting from friction between moving parts are inherent to all mechanical processes on the macro- as well as on the nanometer-scale. However, for scanning probe-based technologies, which rely on a nanometer-sharp tip—measuring just five nanometers at its apex—this problem is accentuated. A few cubic nanometers more or less can ruin the sensitivity of the tip. "In future industrial applications such as large area characterization of the features on a silicon wafer, a tip would need to be able to slide tens of kilometers or miles without replacement," explains IBM scientist Mark Lantz. In the currently used scanning modes, the tip wears out after a few meters or yards. "Moreover, in addition to causing wear of the tip, friction can potentially also do damage to the surface being characterized."

In their paper, published in the September issue of Nature Nanotechnology, IBM scientists solve this challenge by "demonstrating the effective elimination of wear on a tip sliding on a polymer surface over a distance of 750 meters by modulating the force acting on the tip-sample contact." By applying an AC voltage between the cantilever—the mechanical arms on which the tips are attached and over which they are controlled—and the sample surface, the cantilever can be excited at high frequencies of one Megahertz. The cantilever bends and the tip vibrates with an almost imperceptible estimated amplitude of one nanometer. "Though vanishingly small, it is this vibration that greatly reduces friction and "effectively" eliminates—to below the detection limit corresponding to the remarkable low number of losing one atom per meter—tip wear under experimental conditions," states Bernd Gotsmann of IBM Research - Zurich. After the 750-meter wear test, which took a week of continuous operation, the tip was still operating flawlessly.

With the wear problem tackled, researchers at IBM Research - Zurich are now investigating a number of possible applications of scanning probe-based technologies including nanofabrication, nanolithography and high-speed metrology. Operating a large number of tips in parallel would enable, high-throughput, high-speed, automated metrology systems for potential use in chip development and manufacturing. Such metrology systems could characterize device dimensions or identify defects on the structured silicon wafers with much higher precision and accuracy and potentially lower cost than currently available tools. Scientists at IBM Research - Zurich are also investigating powerful scanning probe-based method for high speed patterning of complex two and three-dimensional nanoscale structures.

The scientific paper entitled "Dynamic Superlubricity and the Elimination of Wear on the Nanoscale" by M.A. Lantz, D. Wiesmann, and B. Gotsmann, is published in Nature Nanotechnology, Volume 4, Issue 9 (September 2009).

####

For more information, please click here

Contacts:
Nicole Herfurth
Media Relations
IBM Research GmbH
IBM Research - Zurich
Säumerstrasse 4
8803 Rüschlikon
Switzerland

Tel +41 44 724 8445
Fax +41 44 724 8952

Copyright © http://www.zurich.ibm.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Possible Futures

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

NNCO and Museum of Science Fiction to Collaborate on Nanotechnology and 3D Printing Panels at Awesome Con May 19th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Chip Technology

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Nanotubes/Buckyballs/Fullerenes

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Cotton fibres instead of carbon nanotubes May 9th, 2015

Nanoelectronics

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Discoveries

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Announcements

Researchers find the 'key' to quantum network solution May 25th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Tools

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

DELMIC announces a workshop hosted by Phenom World on Integrated CLEM to be held on Wednesday June 24th at the Francis Crick Institute (Lincoln Inn Fields Laboratory). May 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project