Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Swansea researchers to study safety of nanoparticles

Optical microscopy image of nanoparticles (CdTe quantum dots) attached to the outer side of cell membranes. The image is taken 1 hour after introduction of the nanoparticles to the cellular environment. The attachment and subsequent internalisation of the nanoparticles is driven by a natural cellular process known as Endocytosis, this will deliver the particles into small internal vesicles (the endosomes) which are visible in the image as bright white spots within the cell.
Optical microscopy image of nanoparticles (CdTe quantum dots) attached to the outer side of cell membranes. The image is taken 1 hour after introduction of the nanoparticles to the cellular environment. The attachment and subsequent internalisation of the nanoparticles is driven by a natural cellular process known as Endocytosis, this will deliver the particles into small internal vesicles (the endosomes) which are visible in the image as bright white spots within the cell.

Abstract:
Researchers at Swansea University's Centre for NanoHealth have been awarded £1 million by the Research Councils' Nanoscience through Engineering to Application cross-council programme, led by the Engineering and Physical Science Research Council (EPSRC), to analyse the levels at which nanoparticles can be deemed safe within cells.

Swansea researchers to study safety of nanoparticles

Wales UK | Posted on September 2nd, 2009

The funding, awarded as part of a £1.4 million research grant to Swansea University and collaborators at the Institute of Materials Research at the University of Leeds (EPSRC), will enable Swansea University to develop techniques to accurately measure the nanoparticle dose delivered to biological cells, track the dose dilution as cells reproduce and provide vital information for researchers studying any potential toxic responses.

The four year project will also ensure closer collaboration between researchers at Swansea University's School of Engineering and School of Medicine, both of which have undertaken significant research into nanotechnology, nanometrology and nanotoxicology over the last 15 years.

Professor Huw Summers, lead researcher and Chair in Nanotechnology for Health at Swansea University said: "Current practice in the assessment of toxic dose uses bulk solution measures such as milliliters per gram to determine correct dosages rather than the fundamental measure of particle number. As the size of nanoparticles can vary significantly, some being as small as a protein molecule, determining optimal dosages for use in healthcare and beauty products such as sunscreens or cell-based diagnostics will be crucial.

"Our research which uses light emitting nanoparticles as optical markers within living cells that give an individual signal relating to cell generation will also provide vital information for our colleagues in nanotoxicology about how the dose evolves as cells divide and nanoparticles are passed onto future cell generations."

In recent years the application of nanotechnology to medicine has sparked the imagination of life scientists, engineers, clinicians and industry around the world.

These nanoscale technologies, for example, will enable researchers and scientists to apply engineering methodologies to successfully build and repair tissues such as cartilage and skin using advanced cell culture techniques, act as an early warning system for cancer or diabetes and make products like sunscreen or antiperspirants more effective.

Professor Summers explains: "We've been using nanoparticles for tracking lineage, proliferation and inheritance in populations of biological cells for a number of years. Using fluorescent nanocrystals known as quantum dots, we now have established protocols for introducing nanoparticles into cells and quantifying their interactions within the biological environment through optics-based experiments and detailed computational simulations.

"This enables us to not only predict and control the way cells and structures behave, but test these before they are introduced, reintroduced or implanted in the body to give better results in future healthcare applications."

The project research team will comprise 11 researchers, six academic investigators, three postdoctoral researchers and two PhD students.

In addition to optical tracking of nanoparticles in cells, measurement and computer simulation of the nanoparticle dose evolution, biological assessment of particle uptake and toxicology assays on skin, lung and immune system cells; Swansea University will also be working with the Institute of Materials Research at the University of Leeds which will be providing high resolution electron microscopy to image nanoparticles in cells and provide chemical analysis.

The project is closely linked to the Centre for NanoHealth initiative at Swansea University which stems from a number of joint research programmes between the School of Engineering and the School of Medicine and is expected to position Swansea University as the front-runner in nanotoxicology research in the UK.

The Centre for NanoHealth is the first state-of-the-art NanoHealth facility of its kind in Europe, bringing together the expertise of clinicians, life scientists, engineers and industry to develop cutting-edge technologies and devices for the benefit of patients everywhere.

The Centre for NanoHealth has been made possible after securing more than £10 million from the European Regional Development Fund through the Welsh Assembly Government.

####

About Swansea University
Founded in 1920, Swansea is a vibrant, research-led university at the forefront of academic and scientific discovery. Set in parkland overlooking Swansea Bay on the edge of the breathtaking Gower Peninsula, the University's location is captivating.

For more information, please click here

Contacts:
Press Office:
TEL: +44 (0) 1792 29 50 50
FAX: +44 (0)1792 29 50 48

Copyright © Swansea University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Preparing for Nano

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Possible Futures

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Nanomedicine

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Announcements

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Personal Care/Cosmetics

Programmable materials find strength in molecular repetition May 23rd, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

New ORNL method could unleash solar power potential March 16th, 2016

Safety-Nanoparticles/Risk management

How harmful are nano-copper and anti-fungal combinations in the waterways? October 27th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Quantum Dots/Rods

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Nanobiotechnology

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project