Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Swansea researchers to study safety of nanoparticles

Optical microscopy image of nanoparticles (CdTe quantum dots) attached to the outer side of cell membranes. The image is taken 1 hour after introduction of the nanoparticles to the cellular environment. The attachment and subsequent internalisation of the nanoparticles is driven by a natural cellular process known as Endocytosis, this will deliver the particles into small internal vesicles (the endosomes) which are visible in the image as bright white spots within the cell.
Optical microscopy image of nanoparticles (CdTe quantum dots) attached to the outer side of cell membranes. The image is taken 1 hour after introduction of the nanoparticles to the cellular environment. The attachment and subsequent internalisation of the nanoparticles is driven by a natural cellular process known as Endocytosis, this will deliver the particles into small internal vesicles (the endosomes) which are visible in the image as bright white spots within the cell.

Abstract:
Researchers at Swansea University's Centre for NanoHealth have been awarded £1 million by the Research Councils' Nanoscience through Engineering to Application cross-council programme, led by the Engineering and Physical Science Research Council (EPSRC), to analyse the levels at which nanoparticles can be deemed safe within cells.

Swansea researchers to study safety of nanoparticles

Wales UK | Posted on September 2nd, 2009

The funding, awarded as part of a £1.4 million research grant to Swansea University and collaborators at the Institute of Materials Research at the University of Leeds (EPSRC), will enable Swansea University to develop techniques to accurately measure the nanoparticle dose delivered to biological cells, track the dose dilution as cells reproduce and provide vital information for researchers studying any potential toxic responses.

The four year project will also ensure closer collaboration between researchers at Swansea University's School of Engineering and School of Medicine, both of which have undertaken significant research into nanotechnology, nanometrology and nanotoxicology over the last 15 years.

Professor Huw Summers, lead researcher and Chair in Nanotechnology for Health at Swansea University said: "Current practice in the assessment of toxic dose uses bulk solution measures such as milliliters per gram to determine correct dosages rather than the fundamental measure of particle number. As the size of nanoparticles can vary significantly, some being as small as a protein molecule, determining optimal dosages for use in healthcare and beauty products such as sunscreens or cell-based diagnostics will be crucial.

"Our research which uses light emitting nanoparticles as optical markers within living cells that give an individual signal relating to cell generation will also provide vital information for our colleagues in nanotoxicology about how the dose evolves as cells divide and nanoparticles are passed onto future cell generations."

In recent years the application of nanotechnology to medicine has sparked the imagination of life scientists, engineers, clinicians and industry around the world.

These nanoscale technologies, for example, will enable researchers and scientists to apply engineering methodologies to successfully build and repair tissues such as cartilage and skin using advanced cell culture techniques, act as an early warning system for cancer or diabetes and make products like sunscreen or antiperspirants more effective.

Professor Summers explains: "We've been using nanoparticles for tracking lineage, proliferation and inheritance in populations of biological cells for a number of years. Using fluorescent nanocrystals known as quantum dots, we now have established protocols for introducing nanoparticles into cells and quantifying their interactions within the biological environment through optics-based experiments and detailed computational simulations.

"This enables us to not only predict and control the way cells and structures behave, but test these before they are introduced, reintroduced or implanted in the body to give better results in future healthcare applications."

The project research team will comprise 11 researchers, six academic investigators, three postdoctoral researchers and two PhD students.

In addition to optical tracking of nanoparticles in cells, measurement and computer simulation of the nanoparticle dose evolution, biological assessment of particle uptake and toxicology assays on skin, lung and immune system cells; Swansea University will also be working with the Institute of Materials Research at the University of Leeds which will be providing high resolution electron microscopy to image nanoparticles in cells and provide chemical analysis.

The project is closely linked to the Centre for NanoHealth initiative at Swansea University which stems from a number of joint research programmes between the School of Engineering and the School of Medicine and is expected to position Swansea University as the front-runner in nanotoxicology research in the UK.

The Centre for NanoHealth is the first state-of-the-art NanoHealth facility of its kind in Europe, bringing together the expertise of clinicians, life scientists, engineers and industry to develop cutting-edge technologies and devices for the benefit of patients everywhere.

The Centre for NanoHealth has been made possible after securing more than £10 million from the European Regional Development Fund through the Welsh Assembly Government.

####

About Swansea University
Founded in 1920, Swansea is a vibrant, research-led university at the forefront of academic and scientific discovery. Set in parkland overlooking Swansea Bay on the edge of the breathtaking Gower Peninsula, the University's location is captivating.

For more information, please click here

Contacts:
Press Office:
TEL: +44 (0) 1792 29 50 50
FAX: +44 (0)1792 29 50 48

Copyright © Swansea University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Preparing for Nano

Searching for a nanotech self-organizing principle May 1st, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

Durnham University's DEEPEN project comes to a close September 26th, 2012

Technical Seminar at ANFoS 2012 August 22nd, 2012

Govt.-Legislation/Regulation/Funding/Policy

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Possible Futures

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

Nanomedicine

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Personal Care/Cosmetics

Programmable materials find strength in molecular repetition May 23rd, 2016

Common nanoparticle has subtle effects on oxidative stress genes May 11th, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

New ORNL method could unleash solar power potential March 16th, 2016

Safety-Nanoparticles/Risk management

As You Sow’s Shareholder Inquiry on Nanomaterials Fought by Walgreens: Shareholder Proposal Addresses Recent Laboratory Tests Finding Harmful Nanomaterials in Walgreens’ Store Brand Infant Formula September 21st, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Nano-Toxicity Testing at Regulatory Sciences Summit: In Vitro Tests Can Most Efficiently Assess Nanomaterial Toxicity September 6th, 2016

Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes: This research article by Dr. Subhash Basak et al. will be published in Current Computer-Aided Drug Design, Volume 12, 2016 September 2nd, 2016

Quantum Dots/Rods

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

A new type of quantum bits July 29th, 2016

Nanobiotechnology

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic