Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Platinum nanocatalyst could aid drugmakers: Rice chemists design polymer-coated nanorods for industrial use

Abstract:
Nanoparticles combining platinum and gold act as superefficient catalysts, but chemists have struggled to create them in an industrially useful form. In the Sept. 1 issue of the German scientific journal Angewandte Chemie, Rice University chemists report making a plastic-coated gold-platinum nanorod that can be used in the organic solvents favored by chemical and drug manufacturers. Tests reveal that the polymer-functionalized particles have nearly 100 percent catalytic selectivity for the hydrogenation of terminal olefins.

Platinum nanocatalyst could aid drugmakers: Rice chemists design polymer-coated nanorods for industrial use

Houston, TX | Posted on August 31st, 2009

The research is available online in the Sept. 1 issue of the German scientific journal Angewandte Chemie International Edition.

Catalysts are compounds that speed up or slow down chemical reactions without being consumed by them. An everyday example would be the catalytic converters that help breakdown toxic components of automotive exhaust. The chemical and drug industries spend billions of dollars each year for catalysts that are needed to process drugs and other high-value chemicals.

"There are some industrial reactions where drugmakers have no choice but to use platinum and palladium catalysts, but the majority of these are homogenous, which means they mix readily with reactants and are very difficult to remove," said lead researcher Eugene Zubarev, associate professor in chemistry at Rice. "Because these heavy metals are toxic, they must be completely removed from the drug after its synthesis is completed. However, the removal of homogeneous catalysts is very time-consuming and expensive, which creates a big problem for pharmaceutical companies."

Among catalysts, platinum and palladium are prized for reactions involving hydrogen because atoms of hydrogen typically join together in pairs, and platinum and palladium are particularly good at cleaving these pairs and leaving the individual hydrogen atoms available for reactions with other molecules.

Zubarev and Rice graduate student Bishnu Khanal, who will soon start his postdoctoral research at Los Alamos National Laboratory, set out to make a heterogeneous platinum catalyst that was soluble enough for industrial use, but that could also be easily removed.

Previous studies had shown that combining platinum with gold in tiny nanoparticles could enhance the platinum's catalytic effect, so Zubarev and Khanal started with tiny rods of pure gold and coated them with a layer of platinum so thin that it left the gold exposed in some places.

After confirming the structure of the gold-platinum nanorods, Zubarev and Khanal had to find a way to make them soluble in organic solvents that are favored by industry. Building on Zubarev's previous work in making soluble gold nanorods, the pair found a way to attach hair-like molecules of polystyrene to the surface of the gold-platinum rods.

Zubarev and Khanal found the coated particles were easy to remove from solution with a conventional centrifuge. In addition, the polystyrene shells made them completely soluble in organic solvents and dramatically enhanced their catalytic selectivity.

"The selectivity of the coated gold and platinum nanorods will be very attractive to industry," Zubarev said. "For example, we found they had nearly 100 percent catalytic selectivity for the hydrogenation of terminal olefins."

Zubarev's group is using similar methods to produce gold-palladium catalysts in a follow-up study. Palladium is another high-demand catalyst. "The early indications are very promising," he said.

The research is supported by the National Science Foundation, the Robert A. Welch Foundation and the Alfred Sloan Foundation.

####

About Rice University
Who Knew?
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
Associate Director and Science Editor
Office of Public Affairs/News & Media Relations
Rice University
(office) 713-348-6778
(cell) 713-302-2447

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

Nanomedicine

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Discoveries

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Announcements

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Production of Copper Cobaltite Nanocomposites with Photocatalytic Properties in Iran May 27th, 2015

Dr.Theivasanthi Slashes the Price of Graphene Heavily: World first & lowest price Nano-price (30 USD / kg) of graphene by nanotechnologist May 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project