Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Biodevice project comes down to the nanowire

A nanobioelectronic device
incorporating an alamethicin
biological pore. In the core of the
device is a silicon nanowire (grey),
covered with a lipid bilayer (blue).
The bilayer incorporates bundles
of alamethicin molecules (purple)
that form pore channels in the
membrane.
Image by Scott Dougherty, LLNL
A nanobioelectronic device incorporating an alamethicin biological pore. In the core of the device is a silicon nanowire (grey), covered with a lipid bilayer (blue). The bilayer incorporates bundles of alamethicin molecules (purple) that form pore channels in the membrane. Image by Scott Dougherty, LLNL

Abstract:
If manmade devices could be combined with biological machines, laptops and other electronic devices could get a boost in operating efficiency. Researchers at DOE's Lawrence Livermore National Laboratory have devised a versatile hybrid platform that uses lipid-coated nanowires to build prototype bionanoelectronic devices.

Biodevice project comes down to the nanowire

Livermore, CA | Posted on August 31st, 2009

Mingling biological components in electronic circuits could enhance biosensing and diagnostic tools, advance neural prosthetics such as cochlear implants, and could even increase the efficiency of future computers.

While modern communication devices rely on electric fields and currents to carry the flow of information, biological systems are much more complex. They use an arsenal of membrane receptors, channels and pumps to control signal transduction that is unmatched by even the most powerful computers. For example, conversion of sound waves into nerve impulses is a very complicated process, yet the human ear has no trouble performing it.

"Electronic circuits that use these complex biological components could become much more efficient," said Aleksandr Noy, the LLNL lead scientist on the project.

To create the bionanoelectronic platform, the LLNL team turned to lipid membranes, which are ubiquitous in biological cells. These membranes form a stable, self-healing and virtually impenetrable barrier to ions and small molecules. The researchers incorporated lipid bilayer membranes into silicon nanowire transistors by covering the nanowire with a continuous shell that forms a barrier between the nanowire surface and solution species.

"This ‘shielded wire' configuration allows us to use membrane pores as the only pathway for the ions to reach the nanowire," Noy said. "This is how we can use the nanowire device to monitor specific transport and also to control the membrane protein."

####

About Lawrence Livermore National Laboratory
At LLNL, teams of physicists, chemists, biologists, engineers and other researchers work together to achieve technical innovations and scientific breakthroughs and transform these advances into solutions to nationally important problems.

We continually push the frontiers of knowledge to build the scientific and technological foundation that will be needed to address the national security issues of the future.

For more information, please click here

Contacts:
Lynda Seaver
925.423.3103

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Synthetic Biology

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Possible Futures

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanobiotechnology

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic