Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Pinpoint Neural Nanoblockers in Carbon Nanotubes

 Neural Nanoblocker Metal catalysts  nickel and particularly yttrium  used to create carbon nanotubes can block a key signalling pathway in neurons. Experiments show the metal particles tend to plug cellular pores normally reserved for calcium ions. 
Credit: Lorin Jakubek / Brown University
Neural Nanoblocker Metal catalysts nickel and particularly yttrium used to create carbon nanotubes can block a key signalling pathway in neurons. Experiments show the metal particles tend to plug cellular pores normally reserved for calcium ions.
Credit: Lorin Jakubek / Brown University

Abstract:
A team of Brown University scientists has pinpointed why carbon nanotubes tend to block a critical signaling pathway in neurons. It's not the tubes, the team finds, but the metal catalysts used to form the tubes. The discovery means carbon nanotubes without metal catalysts may be useful in treating human neurological disorders. Results appear in Biomaterials.

Researchers Pinpoint Neural Nanoblockers in Carbon Nanotubes

Providence, RI | Posted on August 29th, 2009

Carbon nanotubes hold many exciting possibilities, some of them in the realm of the human nervous system. Recent research has shown that carbon nanotubes may help regrow nerve tissue or ferry drugs used to repair damaged neurons associated with disorders such as epilepsy, Parkinson's disease and perhaps even paralysis.

Yet some studies have shown that carbon nanotubes appear to interfere with a critical signaling transaction in neurons, throwing doubt on the tubes' value in treating neurological disorders. No one knew why the tubes were causing a problem.

Now a team of Brown University researchers has found that it's not the tubes that are to blame. Writing in the journal Biomaterials, the scientists report that the metal catalysts used to form the tubes are the culprits, and that minute amounts of one metal yttrium could impede neuronal activity. The findings mean that carbon nanotubes without metal catalysts may be able to treat human neurological disorders, although other possible biological effects still need to be studied.

"We can purify the nanotubes by removing the metals," said Lorin Jakubek, a Ph.D. candidate in biomedical engineering and lead author of the paper, "so, it's a problem we can fix."

Jakubek took single-walled carbon nanotubes to the laboratory of Diane Lipscombe, a Brown neuroscientist. The researchers zeroed in on ion channels located at the end of neurons' axons. These channels are gateways of sorts, driven by changes in the voltage across neurons' membranes. When an electrical signal, known as an action potential, is triggered in neurons, these ion channels "open," each designed to take in a certain ion. One such ion channel passes only calcium, a protein that is critical for transmitter release and thus for neurons to communicate with each other.

In experiments using cloned calcium ion channels in embryonic kidney cells, the scientists discovered that nickel and yttrium, two metal catalysts used to form the single-walled carbon nanotubes, were interfering with the ion channel's ability to absorb the calcium.

Because its ionic radius is nearly identical to calcium's, yttrium in particular "gets stuck and prevents calcium from entering and passing through. It's an ion pore blocker," said Lipscombe, who specializes in neuronal ion channels and is a corresponding author on the paper.

The experiments showed that yttrium in trace amounts less than 1 microgram per milliliter of water may disrupt normal calcium signaling in neurons and other electrically active cells, an amount far lower than what had been thought to be safe levels. With nickel, the amount needed to impede calcium signaling was 300 times higher.

"Yttrium is so potent that ... a very low nanotube dose" would be needed to affect neuronal activity, said Robert Hurt, professor of engineering and a corresponding author on the paper.

Jakubek said she was surprised that the metals turned out to be the cause. "Based on the literature, I thought it would be the nanotubes themselves," she said.

Spiro Marangoudakis, Jessica Raingo and Xinyuan Liu contributed to the paper. The National Institutes of Health, the National Science Foundation and the U.S. Environmental Protection Agency funded the research.

####

For more information, please click here

Contacts:
Richard Lewis
(401) 863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Nanotubes/Buckyballs/Fullerenes

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Nanomedicine

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Novel nanoparticles could save soldiers' lives after explosions April 15th, 2015

Discoveries

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE