Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > IBM Scientists First to Image the 'Anatomy' of a Molecule

Abstract:
Imaging individual atoms within a molecule has been a long-standing goal of surface microscopy

IBM Scientists First to Image the 'Anatomy' of a Molecule

Zurich, Switzerland | Posted on August 28th, 2009

IBM scientists have been able to image the "anatomy" -- or chemical structure -- inside a molecule with unprecedented resolution, using a complex technique known as noncontact atomic force microscopy.

(View video: www.youtube.com/watch?v=jnLRl_74BZs)

The results push the exploration of using molecules and atoms at the smallest scale and could greatly impact the field of nanotechnology, which seeks to understand and control some of the smallest objects known to mankind.

"Though not an exact comparison, if you think about how a doctor uses an x-ray to image bones and organs inside the human body, we are using the atomic force microscope to image the atomic structures that are the backbones of individual molecules," said IBM Researcher Gerhard Meyer. "Scanning probe techniques offer amazing potential for prototyping complex functional structures and for tailoring and studying their electronic and chemical properties on the atomic scale."

The team's current publication follows on the heels of another experiment published just two months ago in the June 12 issue of Science (Volume 324, Issue 5933, pp. 1428 - 1431) where IBM scientists measured the charge states of atoms using an AFM. These breakthroughs will open new possibilities for investigating how charge transmits through molecules or molecular networks. Understanding the charge distribution at the atomic scale is essential for building smaller, faster and more energy-efficient computing components than today's processors and memory devices. These components could one day contribute to IBM's vision of a smarter planet by helping instrument and interconnect the physical world.

As reported in the August 28 issue of Science magazine, IBM Research - Zurich scientists Leo Gross, Fabian Mohn, Nikolaj Moll and Gerhard Meyer, in collaboration with Peter Liljeroth of Utrecht University, used an AFM operated in an ultrahigh vacuum and at very low temperatures ( -268oC or - 451oF) to image the chemical structure of individual pentacene molecules. With their AFM, the IBM scientists, for the first time ever, were able to look through the electron cloud and see the atomic backbone of an individual molecule. While not a direct technological comparison, this is reminiscent of x-rays that pass through soft tissue to enable clear images of bones.

The tip that tipped the scale

The AFM uses a sharp metal tip to measure the tiny forces between the tip and the sample, such as a molecule, to create an image. In the present experiments, the molecule investigated was pentacene. Pentacene is an oblong organic molecule consisting of 22 carbon atoms and 14 hydrogen atoms measuring 1.4 nanometers in length. The spacing between neighboring carbon atoms is only 0.14 nanometers--roughly 1 million times smaller then the diameter of a grain of sand. In the experimental image, the hexagonal shapes of the five carbon rings as well as the carbon atoms in the molecule are clearly resolved. Even the positions of the hydrogen atoms of the molecule can be deduced from the image.

"The key to achieving atomic resolution was an atomically sharp and defined tip apex as well as the very high stability of the system," said IBM scientist Leo Gross. To image the chemical structure of a molecule with an AFM, it is necessary to operate in very close proximity to the molecule. The range, where chemical interactions give significant contributions to the forces, is less than a nanometer. To achieve this, the IBM scientists were required to increase the sensitivity of the tip and overcome a major limitation: Similar to the way two magnets would attract or repel each other when getting close, the molecules would easily be displaced by or attach to the tip when the tip was approached too closely--rendering further measurements impossible.

Gross added, "We prepared our tip by deliberately picking up single atoms and molecules and showed that it is the foremost tip atom or molecule that governs the contrast and resolution of our AFM measurements." A tip terminated with a carbon monoxide (CO) molecule yielded the optimum contrast at a tip height of approximately 0.5 nanometers above the molecule being imaged and--acting like a powerful magnifying glass--resolved the individual atoms within the pentacene molecule, revealing its exact atomic-scale chemical structure.

Furthermore, the scientists were able to derive a complete three-dimensional force map of the molecule investigated. "To obtain a complete force map the microscope needed to be highly stable, both mechanically and thermally, to ensure that both the tip of the AFM and the molecule remained unaltered during the more than 20 hours of data acquisition," says Fabian Mohn, who is working on his Ph.D. thesis at IBM Research - Zurich.

To corroborate the experimental findings and gain further insight into the exact nature of the imaging mechanism, IBM scientist Nikolaj Moll performed first-principles density functional theory calculations of the system investigated. He explains, "The calculations helped us understand what caused the atomic contrast. In fact, we found that its source was Pauli repulsion between the CO and the pentacene molecule." This repulsive force stems from a quantum mechanical effect called the Pauli exclusion principle. It states that two identical electrons can not approach each other too closely.

The scientific paper entitled "The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy" by L. Gross, F. Mohn, N. Moll, P. Liljeroth, and G. Meyer, appears in Science, Volume 325, Issue 5944, pp. 1110 - 1114 (28 August 2009).


####

About IBM
Scientists have been striving to "see" and manipulate atoms and molecules to extend human knowledge and push the frontiers of manufacturing capabilities to the nanometer regime. IBM has been a pioneer in nanoscience and nanotechnology ever since the development of the scanning tunneling microscope in 1981 by IBM Fellows Gerd Binnig and Heinrich Rohrer at IBM Research - Zurich. For this invention, which made it possible to image individual atoms and later on to manipulate them, Binnig and Rohrer were awarded the Nobel Prize in Physics in 1986. The AFM, an offspring of the STM, was invented by Binnig in 1986. The STM is widely regarded as the instrument that opened the door to the nanoworld. A new facility for world-class collaborative nanoscale research, the Nanoscale Exploratory Technology Laboratory, will open in 2011 on the campus of IBM Research - Zurich. The nanotech center is part of a strategic partnership in nanotechnology with ETH Zurich, one of Europe's premier technical universities.

For more information, please click here

Contacts:
Jenny Hunter
IBM

510-919-5320

Chris Sciacca
IBM Zurich

41-44 724 84 43

Nicole Herfurth
IBM Zurich

41-44 724 84 45

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Possible Futures

European roadmap for graphene science and technology published February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

Nanotechnology Electric Vehicle (EV) Market Analysis Report 2015: According to Radiant Insights, Inc February 13th, 2015

Chip Technology

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Silicon Catalyst Announces Partnership With imec to Support Semiconductor Start-Ups February 23rd, 2015

Memory Technology

Insight into inner magnetic layers: Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component- February 17th, 2015

Dance of the nanovortices February 2nd, 2015

Nano - "Green" metal oxides ... January 13th, 2015

Quantum optical hard drive breakthrough January 8th, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Tools

Hiden CATLAB Microreactor System at ARABLAB 2015 | Visit us on Booth 1011 February 26th, 2015

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE