Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UI team improves delivery of cancer-fighting molecules

A mouse tumor treated with an aptamer-siRNA combination (right) shows many dead areas (indicated by the asterisks), whereas an untreated tumor (left) is still largely intact. Delivering siRNA successfully to specific cells has been challenging. UI researchers modified siRNA so that it could be injected into the bloodstream and impact only targeted cells.
A mouse tumor treated with an aptamer-siRNA combination (right) shows many dead areas (indicated by the asterisks), whereas an untreated tumor (left) is still largely intact. Delivering siRNA successfully to specific cells has been challenging. UI researchers modified siRNA so that it could be injected into the bloodstream and impact only targeted cells.

Abstract:
Small interfering RNA (siRNA), a type of genetic material, can block potentially harmful activity in cells, such as tumor cell growth. But delivering siRNA successfully to specific cells without adversely affecting other cells has been challenging.

UI team improves delivery of cancer-fighting molecules

Iowa City, IA | Posted on August 27th, 2009

University of Iowa researchers have modified siRNA so that it can be injected into the bloodstream and impact targeted cells while producing fewer side effects. The findings, which were based on animal models of prostate cancer, also could make it easier to create large amounts of targeted therapeutic siRNAs for treating cancer and other diseases. The study results appeared online Aug. 23 in the journal Nature Biotechnology.

"Our goal was to make siRNA deliverable through the bloodstream and make it more specific to the genes that are over expressed in cancer," said the study's senior author Paloma Giangrande, Ph.D., assistant professor of internal medicine and a member of Holden Comprehensive Cancer Center.

In previous research completed at Duke University, Giangrande's team showed that a compound called an aptamer can be combined with siRNA to target certain genes. When the combined molecule is directly injected into tumors in animal models, it triggers the processes that stop tumor growth. However, directly injecting the combination into tumors in humans is difficult.

In the new study, the researchers trimmed the size of a prostate cancer-specific aptamer and modified the siRNA to increase its activity. Upon injection into the bloodstream, the combination triggered tumor regression without affecting normal tissues.

Making the aptamer-siRNA combination smaller makes it easier to produce large amounts of it synthetically, Giangrande said.

The team also addressed the problem that large amounts of siRNA are needed since most of it gets excreted by the kidneys before having an effect. To keep siRNA in the body longer and thereby use less of it, the team modified it using a process called PEGlyation.

"If you want to use siRNA effectively for clinical use, especially for cancer treatment, you need to deliver it through an injection into the bloodstream, reduce the amount of side effects and be able to improve its cost-effectiveness. Our findings may help make these things possible," Giangrande said.

Although the current study focused on prostate cancer, the findings could apply to other cancers and diseases. Giangrande said the next step is to test the optimized aptamer-siRNA compound in a larger animal model.

Other researchers who contributed significantly to the study included James McNamara, Ph.D., and Anton McCaffrey, Ph.D., both UI assistant professors of internal medicine.

The study was supported by an American Cancer Society Institutional Research grant and a Lymphoma SPORE Development Research Award.

JOURNAL ARTICLE ABSTRACT: www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.1560.html

####

About University of Iowa
The University of Iowa is a major national research university located on a 1,900-acre campus in Iowa City in southeast Iowa, on the Iowa River near the intersection of U.S. Interstate Highways 80 and 380. Iowa is composed of 11 colleges, the largest of which is the College of Liberal Arts and Sciences, enrolling most of Iowa's undergraduates. The Henry B. Tippie College of Business, the Roy J. and Lucille A. Carver College of Medicine, and the Colleges of Education, Engineering, Law, Nursing, Pharmacy, enroll undergraduates, and with the Colleges of Dentistry and Public Health provide graduate education in conjunction with the Graduate College.

For more information, please click here

Contacts:
Becky Soglin
319-356-7127

Copyright © University of Iowa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Possible Futures

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Discoveries

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Nanoscale view of energy storage January 16th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Researchers produced nitrogen doped bimodal cellular structure activated carbon December 29th, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanobiotechnology

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project