Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > LIBRA 200 CS-TEM/STEM from Carl Zeiss

Aberration free high resolution imaging of a YAG crystal interface at 200 kV.
[Courtesy of Katharina Hartmann, GFZ German Research Center for Geoscienes, Potsdam.]
Aberration free high resolution imaging of a YAG crystal interface at 200 kV. [Courtesy of Katharina Hartmann, GFZ German Research Center for Geoscienes, Potsdam.]

Abstract:
A corrected view of the sub-Angstrom world

LIBRA 200 CS-TEM/STEM from Carl Zeiss

Oberkochen, Germany | Posted on August 27th, 2009

Carl Zeiss, a leading global provider of electron- and ion-beam imaging and analysis solutions, today presents its newly developed line of corrected LIBRA 200 transmission electron microscopes (TEM).

Two different configurations are offered:
The LIBRA 200 CS TEM is based on the energy-filter version of the 200kV LIBRA TEM with a corrector for spherical aberrations of the objective lens. By use of this corrector, image resolution below 0.7 Angstrom can be achieved. Many applications will benefit from this development, e.g. imaging of interfaces in semiconductors or solar cells, grain boundaries in steel alloys or damage induced by nuclear radiation in shielding materials. In all these application fields the control of the material at the atomic scale is necessary for in-depth understanding of the underlying physical or chemical processes and to guarantee the functionality of the devices. Another advantage based on the CS corrector is the ability to reduce the acceleration voltage down to 80kV and still achieve resolutions below one Angstrom. Beam damage can thus be reduced and sensitive materials like carbon nanotubes can be analyzed.

The LIBRA 200 STEM with a corrector for the condenser system is used for imaging in the scanning mode with a resolution far below one Angstrom and extreme high resolution chemical analysis of samples, especially by means of electron energy loss spectroscopy (EELS). The corrected condenser allows minimizing the probe size below one Angstrom, and at the same time increases intensity. Additionally the unique monochromator reduces the energy spread down to 0.15 eV. Basic research in materials science (e.g. chemical analysis of nano-particles) especially will benefit from the resulting energy resolution that otherwise can only be reached at synchrotron rings.

"We have already started installation of several systems at customer sites in leading research facilities worldwide. Here resolution of 0.66 Angstrom could be demonstrated. Customer feedback is extremely positive," explains Thomas Albrecht, Head of Product Management at Carl Zeiss SMT´s Nano Technology Systems division. "We do have a lot of experience with corrected transmission electron microscopes from customer specific installations like the CRISP system at the Caesar—Center for Advanced European Studies and Research in Bonn. Now we are using this experience to broadly offer this superb technology to the market. This strategy is in-line with our mission "Maximum Information—Maximum Insight."

Correctors are developed and produced by the Heidelberg-based company CEOS GmbH, a specialist for electron optical correctors and a long-term partner for Carl Zeiss.

####

About Carl Zeiss
The Carl Zeiss SMT AG as a leading supplier is dedicated to technical excellence.

By serving the global nano manufacturing and testing equipment markets we sustain and facilitate growth in nano technologies.

Our leading-edge optical and e-beam expertise based on our core competencies is the key to our customers' success.

For more information, please click here

Contacts:
Markus Wiederspahn
Public Relations
Carl Zeiss SMT AG
Phone: +49 7364 20-2194
Fax: +49 7364 20-9206

Copyright © Carl Zeiss

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Chip Technology

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Tools

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Solar/Photovoltaic

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Going green with nanotechnology December 21st, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project