Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > LIBRA 200 CS-TEM/STEM from Carl Zeiss

Aberration free high resolution imaging of a YAG crystal interface at 200 kV.
[Courtesy of Katharina Hartmann, GFZ German Research Center for Geoscienes, Potsdam.]
Aberration free high resolution imaging of a YAG crystal interface at 200 kV. [Courtesy of Katharina Hartmann, GFZ German Research Center for Geoscienes, Potsdam.]

Abstract:
A corrected view of the sub-Angstrom world

LIBRA 200 CS-TEM/STEM from Carl Zeiss

Oberkochen, Germany | Posted on August 27th, 2009

Carl Zeiss, a leading global provider of electron- and ion-beam imaging and analysis solutions, today presents its newly developed line of corrected LIBRA 200 transmission electron microscopes (TEM).

Two different configurations are offered:
The LIBRA 200 CS TEM is based on the energy-filter version of the 200kV LIBRA TEM with a corrector for spherical aberrations of the objective lens. By use of this corrector, image resolution below 0.7 Angstrom can be achieved. Many applications will benefit from this development, e.g. imaging of interfaces in semiconductors or solar cells, grain boundaries in steel alloys or damage induced by nuclear radiation in shielding materials. In all these application fields the control of the material at the atomic scale is necessary for in-depth understanding of the underlying physical or chemical processes and to guarantee the functionality of the devices. Another advantage based on the CS corrector is the ability to reduce the acceleration voltage down to 80kV and still achieve resolutions below one Angstrom. Beam damage can thus be reduced and sensitive materials like carbon nanotubes can be analyzed.

The LIBRA 200 STEM with a corrector for the condenser system is used for imaging in the scanning mode with a resolution far below one Angstrom and extreme high resolution chemical analysis of samples, especially by means of electron energy loss spectroscopy (EELS). The corrected condenser allows minimizing the probe size below one Angstrom, and at the same time increases intensity. Additionally the unique monochromator reduces the energy spread down to 0.15 eV. Basic research in materials science (e.g. chemical analysis of nano-particles) especially will benefit from the resulting energy resolution that otherwise can only be reached at synchrotron rings.

"We have already started installation of several systems at customer sites in leading research facilities worldwide. Here resolution of 0.66 Angstrom could be demonstrated. Customer feedback is extremely positive," explains Thomas Albrecht, Head of Product Management at Carl Zeiss SMT´s Nano Technology Systems division. "We do have a lot of experience with corrected transmission electron microscopes from customer specific installations like the CRISP system at the Caesar—Center for Advanced European Studies and Research in Bonn. Now we are using this experience to broadly offer this superb technology to the market. This strategy is in-line with our mission "Maximum Information—Maximum Insight."

Correctors are developed and produced by the Heidelberg-based company CEOS GmbH, a specialist for electron optical correctors and a long-term partner for Carl Zeiss.

####

About Carl Zeiss
The Carl Zeiss SMT AG as a leading supplier is dedicated to technical excellence.

By serving the global nano manufacturing and testing equipment markets we sustain and facilitate growth in nano technologies.

Our leading-edge optical and e-beam expertise based on our core competencies is the key to our customers' success.

For more information, please click here

Contacts:
Markus Wiederspahn
Public Relations
Carl Zeiss SMT AG
Phone: +49 7364 20-2194
Fax: +49 7364 20-9206

Copyright © Carl Zeiss

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Chip Technology

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Nanoelectronics

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Cornell researchers create first self-assembled superconductor February 1st, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New type of nanowires, built with natural gas heating: UNIST research team developed a new simple nanowire manufacturing technique February 1st, 2016

Announcements

Scientists create laser-activated superconductor February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Tools

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Cornell researchers create first self-assembled superconductor February 1st, 2016

Solar/Photovoltaic

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic