Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Novel Technique Enables Rapid Size Determination of Quantum Dots and Nanoparticles

Abstract:
Novel Technique Enables Rapid Size Determination of Quantum Dots and Nanoparticles

Novel Technique Enables Rapid Size Determination of Quantum Dots and Nanoparticles

York, UK | Posted on August 26th, 2009

Quantum dots are a new form of semiconductors that model atoms. Being only nanometers in size and offering high quantum efficiency, quantum dots are opening up exciting new applications in medical imaging, electronics and optical technologies. Determining the hydrodynamic radius of synthesized samples is of considerable importance as size has a significant effect on the more subtle effects offered by quantum dots.

Data presented on the website (www.paraytec.com/downloads/application-notes/) shows how researchers were able to achieve excellent correlation between experimental and expected values of quantum dot hydrodynamic radii with typical analysis times of less than 10 minutes. Professor Stephen Evansof the Department of Physics at the University of Leeds (UK) commented "We are delighted at the data generated from this study. This approach promises to offer significant benefit to the quantum dot and nanoparticle manufacturing community as it has the potential to enable rapid, on-line size determination in a fraction of the time offered by current methods such as Transmission Electron Microscopy (TEM)".

The study was peformed on the ActiPix™ HT Nano-Sizing System. This system is a high precision nano-sizing system consisting of a precision nano-injector, autosampler and detector. Samples are typically stored in the autosampler prior to injection of a few nanolitres of each sample into a fused capillary. A plug of the sample, typically 20-100 nL, is injected at the capillary inlet of a specially designed sizing cartridge and driven by application of external pressure along the capillary. UV absorption of the sample is recorded in the first and the second detection window using the ActiPix™ D100 detector. Whilst the area of the peak is the same, the widths of both peaks are different: the signal from the second window has a greater width and lower amplitude due to Taylor dispersion. The peaks are fitted with an appropriate peak fitting function using software supplied with the system. The area under the peak corresponds to the amount of the quantum dot injected. The standard deviations are used to calculate the hydrodynamic radius of the sample.

Paraytec's multi-award winning product, the ActiPix™ D100, is the world's first quantitative UV area imaging system. As well as providing superior performance over conventional particle measuring techniques, which cannot effectively measure down to sub 20 nanometre sizes, the patented ActiPix™ opens up intriguing new possibilities never before possible using conventional detectors.

####

About Paraytec Ltd
Paraytec Ltd is a scientific instrument company based in York, UK, designing, developing and manufacturing innovative detectors. Paraytec was established in January 2005 as a spin-out from the Chemistry Department at the University of York, UK. Winner of the prestigious PittCon Editors Silver Award and an R&D 100 Award in 2007, the ActiPix™ D100 has achieved widespread recognition as a novel analytical instrument delivering applications advances.

For more information, please click here

Contacts:
+44-1904-526270

Copyright © Paraytec Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Nanomedicine

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Optical computing/ Photonic computing

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Rare Earth atoms see the light: Physicist Dirk Bouwmeester discovers a promising route for combined optical and solid state-based quantum information processing April 25th, 2016

Sensors

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Nanoelectronics

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Announcements

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Tools

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Quantum Dots/Rods

Superfast light source made from artificial atom April 28th, 2016

Quantum dots enhance light-to-current conversion in layered semiconductors: Research demonstrates promise of a new approach for improving solar cells, photocatalysts, light sensors, and other optoelectronic devices April 11th, 2016

Revealing the ion transport at nanoscale March 30th, 2016

Sweet 'quantum dots' light the way for new HIV and Ebola treatment March 15th, 2016

Nanobiotechnology

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Photonics/Optics/Lasers

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic