Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotubes help to solve desalination problem

Abstract:
A team of researchers from The Australian National University have discovered a way to remove salt from seawater using nanotubes made from boron and nitrogen atoms that will make the process up to five times faster.

Nanotubes help to solve desalination problem

Australia | Posted on August 26th, 2009

With 25 percent of the world's population currently affected by water shortages, researchers Dr Tamsyn Hilder, Dr Dan Gordon and group leader Professor Shin-Ho Chung from the Computational Biophysics Group at the Research School of Biology at ANU have come up with a way to eliminate all salt from seawater whilst maintaining high water flow rates. Their results have been published in the journal Small.

With population growth and climate change limiting the world's fresh water stores, desalination and demineralisation are fast becoming feasible solutions. However, there is an urgent need to make the process of desalination more effective and less costly than current methods. Nanotechnology-based water purification devices, such as those proposed by Hilder, Gordon and Chung, have the potential to transform the field of desalination.

"Boron nitride nanotubes can be thought of as a hollow cylindrical tube made up of boron and nitrogen atoms," said Dr Hilder. "These nanotubes are incredibly small, with diameters less than one-billionth of a meter, or 10,000 times smaller than the thickness of a single strand of human hair.

"Current desalination methods force seawater through a filter using energies four times larger than necessary. Throughout the desalination process salt must be removed from one side of the filter to avoid the need to apply even larger energies.

"Using boron nitride nanotubes, and the same operating pressure as current desalination methods, we can achieve 100 percent salt rejection for concentrations twice that of seawater with water flowing four times faster, which means a much faster and more efficient desalination process."

Hilder, Gordon and Chung use computational tools to simulate the water and salt moving through the nanotube. They found that the boron nitride nanotubes not only eliminate salt but also allow water to flow through extraordinarily fast, comparable to biological water channels naturally found in the body.

"Our research also suggests the possibility of engineering simple nanotubes that mimic some of the functions of complex biological nanotubes or nanochannels," said Professor Chung, and work is continuing to investigate these possibilities further. These devices, once successfully manufactured, may be used for antibiotics, ultra-sensitive detectors or anti-cancer drugs.

A copy of the paper is available at: dx.doi.org/10.1002/smll.200900349

####

About Australian National University
ANU was established by the Chifley government in 1946 to build the nationís intellectual infrastructure. We are still driven by our founding mission to advance the cause of learning and research in Australia and take our place amongst the great universities of the world. Explore this gateway to find out more about our history, governance and structure, our campus and our community.

For more information, please click here

Contacts:
For interviews:
Dr Tamsyn Hilder
02 6125 4034 / 0401 481 575

Professor Shin-Ho Chung
02 6125 2024 / 0400 195 897

For media assistance:
Penny Cox
02 6125 3549 / 0424 016 978

Copyright © Australian National University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Nanotubes/Buckyballs/Fullerenes

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Revolutionary MIT-Developed Nanotechnology Company Showcases at CAMX in Dallas August 20th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Announcements

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Water

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Iranian Scientists Utilize Nanomembranes to Purify Wastewater of Olive Oil Plants August 20th, 2015

Sonocatalysts Able to Purify Organic Pollutants of Wastewater August 19th, 2015

Engineers identify how to keep surfaces dry underwater: Research team is first to identify surface 'roughness' required to achieve amazing feat August 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic