Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCSB Scientists Discover Potential Drug Delivery System

Erkki Ruoslahti
Erkki Ruoslahti

Abstract:
Scientists at UC Santa Barbara have discovered a potential new drug delivery system. The finding is a biological mechanism for delivery of nanoparticles into tissue. The results are published in this week's Proceedings of the National Academy of Sciences.

UCSB Scientists Discover Potential Drug Delivery System

Santa Barbara, CA | Posted on August 24th, 2009

"This work is important because when giving a drug to a patient, it circulates in the blood stream, but often doesn't get into the tissue," said senior author Erkki Ruoslahti, of the Burnham Institute for Medical Research at UCSB. "This is especially true with tumors.

"We believe this method will lead to better, more efficient delivery of drugs," he said. In this study, the scientists used prostate cancer cells as their target, but the method could apply to any type of cell.

The scientists developed a peptide, a small piece of protein that can carry "cargo" for delivery into the cell. The cargo could be a nanoparticle, or even a cell. Riding on the peptide, the cargo gets out of the blood vessel and penetrates the tissue.

The drug is located at one end of the peptide. At the other is the "C terminal," which has the "motif" -- an amino acid sequence including arginine or lysine, that causes the tissue penetration. This terminal has to be open, the researchers found. The strict requirement for the C terminal led the group to coin a new name, the "C-end rule," or CendR, pronounced "sender."

Ruoslahti explained that another exciting aspect of the study is the discovery that viruses appear to use this "CendR" system to get into cells. "It's a natural system," he said. "We're not quite clear what the exact function is, but viruses appear to take advantage of it."

Ongoing research in the Ruoslahti lab is understanding how viruses use this system, and then working to develop inhibitors to prevent viruses from entering the cell.

The two first authors on the paper are Tambet Teesalu and Kazuki N. Sugahara, both of the Burnham Institute for Medical Research at UCSB. Third author Venkata Ramana Kotamraju, of the same institute, made the peptides. Ruoslahti is also affiliated with the Burnham Institute for Medical Research in La Jolla, Calif.

####

For more information, please click here

Contacts:
Gail Gallessich

805-893-7220

George Foulsham

805-893-3071

FEATURED RESEARCHERS
Erkki Ruoslahti

805-893-5327

Copyright © UCSB

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project