Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Printing silicon in South Africa - Part one

August 24th, 2009

Printing silicon in South Africa - Part one

Abstract:
The engine of the new printed electronics will be printed transistors on flexible substrates that can be one tenth to one hundredth of the cost of those in simple silicon chips.

Most of the work has been directed towards organic transistors because they are easy to print and some believe that they are a good route to ambipolar transistors (p and n type in one device) and light emitting transistors. However, tussling for the low cost slot - the main market need - we now have a rapidly increasing numbers of research centers working on inorganic printed transistors, both printed silicon and printed metal oxides, particularly based on zinc oxide semiconductors. These exhibit greater charge mobility in the semiconductor and therefore higher frequency of operation opening up larger potential markets.

Some say they also offer lower material costs, particularly if low temperature processes can be employed. Printed silicon nanoparticles have received the least attention because the inks are very difficult to make and often high temperature annealing is needed after the deposition.

In the USA, companies such as Kovio and Nanogram have pioneered printed silicon transistors and Epson and others in Japan have done work. Now some very interesting advances are being reported in South Africa, the scientific papers including one reporting collaboration with the US company Printovate. Daniel Gamota is co-founder, with former Motorola colleague J.Zhang, and president of Printovate, Inc. which developed a clean-tech large area electronics manufacturing technology, for point-of-care diagnostics, lighting, and renewable energy applications.

Source:
printedelectronicsworld.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chip Technology

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Nanocubes simplify printing and imaging in color and infrared: New technology allows multispectral reactions on a single chip December 15th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project