Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A Partnership for improved Diagnostics

Chip with insight: silicon photomultipliers could help to locate tumours
in the body more accurately - without the disadvantages and side effects
of other procedures. Credit: MPI for Physics / Masahiro Teshima
Image: MPI for Physics / Masahiro Teshima
Chip with insight: silicon photomultipliers could help to locate tumours in the body more accurately - without the disadvantages and side effects of other procedures. Credit: MPI for Physics / Masahiro Teshima Image: MPI for Physics / Masahiro Teshima

Abstract:
Max Planck Innovation and PerkinElmer conclude a licensing agreement for highly efficient detectors for medical technology

A Partnership for improved Diagnostics

Munich | Posted on August 20th, 2009

In future, it will be possible to detect malignant tumors more rapidly and more reliably - with instruments that combine magnetic resonance tomography and positron emission tomography, two conventional methods in medical diagnostics. The US company PerkinElmer Inc. develops detectors for such instruments, and will be using detector technology developed by astronomers at the Max Planck Institute of Physics for this application. Max Planck Innovation has now concluded a licensing agreement with PerkinElmer that grants the company the exclusive right to use these silicon photomultipliers (SiPM).

Medical diagnosis is often a matter of weighing up the options. This begins with the selection of the right method: Although magnetic resonance tomography (MRT) supplies pinpoint sharp images of organs, bones and connective tissue, it provides no information on the metabolic activity in individual regions. An MRT is therefore not much use when looking for tumors which reveal themselves by their particularly high sugar metabolism. But this is exactly what is detected by positron-emission tomography (PET), although it does not disclose the exact locations of the active cells. Computer tomography, on the other hand, solves this dilemma, but involves additional X-ray exposure for patients.

Detectors used by the Max Planck physicists to detect cosmic gamma radiation are now facilitating the combination of PET and MRT in one instrument. The detectors that positron-emission tomographs normally employ to count photons are not suitable for such a combination because the MRT's strong magnetic field thwarts the detection of photons. Consequently, the first integrated PE and MR tomographs operate with the aid of avalanche photodiodes (APD). These have a much lower sensitivity, are slower and consume more power than the silicon photomultipliers which were originally developed by Russian researchers at the Moscow State Engineering Physics Institute, and have finally been developed further for practical applications by the group of Max Planck researchers headed by Masahiro Teshima and Razmik Mirzoyan.

"We are convinced that the SiPM technology will be very useful in medicine and environmental technology," says Michael Ersoni, Vice President of PerkinElmer and General Manager of the global detection business. PerkinElmer and Max Planck Innovation GmbH, the technology transfer company of the Max Planck Society, have concluded an exclusive licensing agreement for the silicon photomultipliers. However, these highly sensitive detectors could be used wherever it is important to detect the minutest quantities of light. In addition to the PET diagnostic application, Ersoni gives analytical fluorescence measurements as a further example.

"PerkinElmer is the world's leading company for photodetectors and therefore the ideal industrial partner to enable us to introduce the silicon photomultipliers into medical applications and analytical applications for the environment," says Bernd Ctortecka, patent and licensing manager at Max Planck Innovation: "The global operator commands a strong market position, the necessary development capacity and the experience to introduce the technology into a market that is currently undergoing rapid development."


####

About Max Planck Gesellschaft
The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universities are not in a position to accommodate or deal with adequately. These interdisciplinary research areas often do not fit into the university organization, or they require more funds for personnel and equipment than those available at universities. The variety of topics in the natural sciences and the humanities at Max Planck Institutes complement the work done at universities and other research facilities in important research fields. In certain areas, the institutes occupy key positions, while other institutes complement ongoing research. Moreover, some institutes perform service functions for research performed at universities by providing equipment and facilities to a wide range of scientists, such as telescopes, large-scale equipment, specialized libraries, and documentary resources.

For more information, please click here

Contacts:
Bernd Ctortecka PhD
Max Planck Innovation, Munich
Tel.: + 49 89 29 09 19-20

Copyright © Max Planck Gesellschaft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Possible Futures

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanomedicine

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Tools

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Spider silk: Mother Nature's bio-superlens August 22nd, 2016

Nanobiotechnology

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Thomas Swan and NGI announce unique partnership July 28th, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic