Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A Partnership for improved Diagnostics

Chip with insight: silicon photomultipliers could help to locate tumours
in the body more accurately - without the disadvantages and side effects
of other procedures. Credit: MPI for Physics / Masahiro Teshima
Image: MPI for Physics / Masahiro Teshima
Chip with insight: silicon photomultipliers could help to locate tumours in the body more accurately - without the disadvantages and side effects of other procedures. Credit: MPI for Physics / Masahiro Teshima Image: MPI for Physics / Masahiro Teshima

Abstract:
Max Planck Innovation and PerkinElmer conclude a licensing agreement for highly efficient detectors for medical technology

A Partnership for improved Diagnostics

Munich | Posted on August 20th, 2009

In future, it will be possible to detect malignant tumors more rapidly and more reliably - with instruments that combine magnetic resonance tomography and positron emission tomography, two conventional methods in medical diagnostics. The US company PerkinElmer Inc. develops detectors for such instruments, and will be using detector technology developed by astronomers at the Max Planck Institute of Physics for this application. Max Planck Innovation has now concluded a licensing agreement with PerkinElmer that grants the company the exclusive right to use these silicon photomultipliers (SiPM).

Medical diagnosis is often a matter of weighing up the options. This begins with the selection of the right method: Although magnetic resonance tomography (MRT) supplies pinpoint sharp images of organs, bones and connective tissue, it provides no information on the metabolic activity in individual regions. An MRT is therefore not much use when looking for tumors which reveal themselves by their particularly high sugar metabolism. But this is exactly what is detected by positron-emission tomography (PET), although it does not disclose the exact locations of the active cells. Computer tomography, on the other hand, solves this dilemma, but involves additional X-ray exposure for patients.

Detectors used by the Max Planck physicists to detect cosmic gamma radiation are now facilitating the combination of PET and MRT in one instrument. The detectors that positron-emission tomographs normally employ to count photons are not suitable for such a combination because the MRT's strong magnetic field thwarts the detection of photons. Consequently, the first integrated PE and MR tomographs operate with the aid of avalanche photodiodes (APD). These have a much lower sensitivity, are slower and consume more power than the silicon photomultipliers which were originally developed by Russian researchers at the Moscow State Engineering Physics Institute, and have finally been developed further for practical applications by the group of Max Planck researchers headed by Masahiro Teshima and Razmik Mirzoyan.

"We are convinced that the SiPM technology will be very useful in medicine and environmental technology," says Michael Ersoni, Vice President of PerkinElmer and General Manager of the global detection business. PerkinElmer and Max Planck Innovation GmbH, the technology transfer company of the Max Planck Society, have concluded an exclusive licensing agreement for the silicon photomultipliers. However, these highly sensitive detectors could be used wherever it is important to detect the minutest quantities of light. In addition to the PET diagnostic application, Ersoni gives analytical fluorescence measurements as a further example.

"PerkinElmer is the world's leading company for photodetectors and therefore the ideal industrial partner to enable us to introduce the silicon photomultipliers into medical applications and analytical applications for the environment," says Bernd Ctortecka, patent and licensing manager at Max Planck Innovation: "The global operator commands a strong market position, the necessary development capacity and the experience to introduce the technology into a market that is currently undergoing rapid development."


####

About Max Planck Gesellschaft
The research institutes of the Max Planck Society perform basic research in the interest of the general public in the natural sciences, life sciences, social sciences, and the humanities. In particular, the Max Planck Society takes up new and innovative research areas that German universities are not in a position to accommodate or deal with adequately. These interdisciplinary research areas often do not fit into the university organization, or they require more funds for personnel and equipment than those available at universities. The variety of topics in the natural sciences and the humanities at Max Planck Institutes complement the work done at universities and other research facilities in important research fields. In certain areas, the institutes occupy key positions, while other institutes complement ongoing research. Moreover, some institutes perform service functions for research performed at universities by providing equipment and facilities to a wide range of scientists, such as telescopes, large-scale equipment, specialized libraries, and documentary resources.

For more information, please click here

Contacts:
Bernd Ctortecka PhD
Max Planck Innovation, Munich
Tel.: + 49 89 29 09 19-20

Copyright © Max Planck Gesellschaft

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Nanomedicine

A novel way to apply drugs to dental plaque Nanoparticles release drugs to reduce tooth decay April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Nanion Technologies Appoints James Costantin as Director of Customer Relations: Nanion is pleased to announce the appointment of Dr. James Costantin as Director of Customer Relations at Nanion Technologies Inc. March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Sensors

From tobacco to cyberwood March 31st, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Nanodevice Invented in Iran to Detect Hydrogen Sulfide in Oil, Gas Industry March 20th, 2015

Announcements

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Tools

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

PIHera: Largest Family of Piezo Stage Scanners with 10X Greater Positioning Area March 31st, 2015

New Applications Brochure on Complex Motion Control Systems for Scientific Research March 31st, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

Nanobiotechnology

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

From tobacco to cyberwood March 31st, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

Alliances/Partnerships/Distributorships

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

Halas, Nordlander awarded Optical Society's R.W. Wood Prize: Rice University researchers recognized for pioneering nanophotonics March 21st, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE