Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA-Coated Nanotubes Help Kill Tumors Without Harm to Surrounding Tissue

Abstract:
Researchers at Wake Forest University School of Medicine have destroyed prostate cancer tumors in mice by injecting them with specially-coated, miniscule carbon tubes and then superheating the tubes with a brief zap of a laser.

DNA-Coated Nanotubes Help Kill Tumors Without Harm to Surrounding Tissue

Winston-Salem, NC | Posted on August 19th, 2009

The procedure, which used DNA-encased, multi-walled carbon nanotubes (MWCNTs) to treat human prostate cancer tumors in mice, left only a small burn on the skin that healed within days.

"That we could eradicate the tumor mass and not harm the tissue is truly amazing," said principal investigator William H. Gmeiner, Ph.D., a professor of cancer biology at the School of Medicine.

An advance copy of the study is now available in the online edition of ACS Nano and the full paper is scheduled to appear in a future print issue.

The researchers envision using the particles not only to kill tumors through heating, but also to target cancer drugs to the diseased area in patients.

"The long-term goal in the project is to be able to use the DNA-encased MWCNTs in multi-modality fashion for a variety of types of tumors," Gmeiner said.

Carbon nanotubes are sub-microscopic particles that have been the subject of intense cancer research. The MWCNTs used in the current study consist of several nanotubes that "fit inside one another like Russian dolls," Gmeiner said. The MWCNTs are injected into a tumor and then heated with laser-generated near-infrared radiation. For this study, the tubes were injected into human prostate cancer tumors being grown in mice. The radiation causes the tubes to vibrate, creating heat. That heat kills the cancer cells near the nanotubes. If there are enough nanotubes, the amount of heat generated can kill whole tumors.

For this study, researchers used MWCNTs encased with DNA, which prevented them from bunching up in the tumor, allowing them to heat more efficiently at a lower level of radiation and leaving the surrounding tissue virtually unharmed.

With funding from the National Cancer Institute and the North Carolina Biotechnology Center, researchers grew 24 prostate cancer tumors in 12 mice. They then separated the mice into groups receiving treatment with DNA-encased MWCNTs and laser, laser only, non-DNA-encased MWCNTs only, or no treatment.

The eight tumors treated with a single injection of DNA-encased MWCNTs and zapped with a 70-second burst from a three-watt laser were gone within six days after treatment. While a minor surface burn appeared at the site of laser treatment, it healed within a few days with antibiotic ointment, Gmeiner said.

The tumors in the other treatment groups showed no distinguishable reduction. Using the DNA-encased MWCNTs increased heat production two- to threefold - allowing researchers to use fewer nanotubes and a less powerful laser to kill tumors - an important consideration as scientists determine potential issues with the toxicity of nanotubes, since they remain in the body after treatment, Gmeiner said.

Current thermal ablation, or heat therapy, treatments for human tumors include radiofrequency ablation, which causes regional heating between two electrodes implanted in tissue but cannot be used to selectively distinguish cancer cells from healthy cells, like researchers hope they will be able to do with MWCNTs. In addition to the DNA-encased MWCNTs used in this study, other nanomaterials, such as single-walled carbon nanotubes and gold nanoshells, are also currently undergoing experimental investigation as cancer therapies.

Before treatment with MWCNTs can be tested in humans, studies need to be done to test the toxicity and safety, looking to see if the treatment causes any changes to organs over time, as well as the pharmacology of the treatment, to see what happens to the nanotubes, which are synthetic materials, over time.

Co-investigators for the study were Ralph D'Agostino Jr., Ph.D., John Olson, M.S., Evan Gomes, Ph.D., and doctoral student Supratim Ghosh, all of the School of Medicine; Samrat Dutta and Martin Guthold, Ph.D., of the Wake Forest University Department of Physics, and David L. Carroll, Ph.D., director of the Wake Forest University Center for Nanotechnology and Molecular Materials.

####

About Wake Forest University School of Medicine
Wake Forest University Baptist Medical Center (www.wfubmc.edu) is an academic health system comprised of North Carolina Baptist Hospital, Brenner Children’s Hospital, Wake Forest University Physicians, and Wake Forest University Health Sciences, which operates the university’s School of Medicine and Piedmont Triad Research Park. The system comprises 1,056 acute care, rehabilitation and long-term care beds and has been ranked as one of “America’s Best Hospitals” by U.S. News & World Report since 1993. Wake Forest Baptist is ranked 32nd in the nation by America’s Top Doctors for the number of its doctors considered best by their peers. The institution ranks in the top third in funding by the National Institutes of Health and fourth in the Southeast in revenues from its licensed intellectual property.

For more information, please click here

Contacts:
Media Relations Contacts:
Jessica Guenzel

(336) 716-3487

Bonnie Davis

(336) 716-4977

Shannon Koontz

(336) 716-2415

Copyright © Wake Forest University School of Medicine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Possible Futures

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Nanotubes/Buckyballs/Fullerenes

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Nanobiotechnology

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project