Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > DNA-Coated Nanotubes Help Kill Tumors Without Harm to Surrounding Tissue

Abstract:
Researchers at Wake Forest University School of Medicine have destroyed prostate cancer tumors in mice by injecting them with specially-coated, miniscule carbon tubes and then superheating the tubes with a brief zap of a laser.

DNA-Coated Nanotubes Help Kill Tumors Without Harm to Surrounding Tissue

Winston-Salem, NC | Posted on August 19th, 2009

The procedure, which used DNA-encased, multi-walled carbon nanotubes (MWCNTs) to treat human prostate cancer tumors in mice, left only a small burn on the skin that healed within days.

"That we could eradicate the tumor mass and not harm the tissue is truly amazing," said principal investigator William H. Gmeiner, Ph.D., a professor of cancer biology at the School of Medicine.

An advance copy of the study is now available in the online edition of ACS Nano and the full paper is scheduled to appear in a future print issue.

The researchers envision using the particles not only to kill tumors through heating, but also to target cancer drugs to the diseased area in patients.

"The long-term goal in the project is to be able to use the DNA-encased MWCNTs in multi-modality fashion for a variety of types of tumors," Gmeiner said.

Carbon nanotubes are sub-microscopic particles that have been the subject of intense cancer research. The MWCNTs used in the current study consist of several nanotubes that "fit inside one another like Russian dolls," Gmeiner said. The MWCNTs are injected into a tumor and then heated with laser-generated near-infrared radiation. For this study, the tubes were injected into human prostate cancer tumors being grown in mice. The radiation causes the tubes to vibrate, creating heat. That heat kills the cancer cells near the nanotubes. If there are enough nanotubes, the amount of heat generated can kill whole tumors.

For this study, researchers used MWCNTs encased with DNA, which prevented them from bunching up in the tumor, allowing them to heat more efficiently at a lower level of radiation and leaving the surrounding tissue virtually unharmed.

With funding from the National Cancer Institute and the North Carolina Biotechnology Center, researchers grew 24 prostate cancer tumors in 12 mice. They then separated the mice into groups receiving treatment with DNA-encased MWCNTs and laser, laser only, non-DNA-encased MWCNTs only, or no treatment.

The eight tumors treated with a single injection of DNA-encased MWCNTs and zapped with a 70-second burst from a three-watt laser were gone within six days after treatment. While a minor surface burn appeared at the site of laser treatment, it healed within a few days with antibiotic ointment, Gmeiner said.

The tumors in the other treatment groups showed no distinguishable reduction. Using the DNA-encased MWCNTs increased heat production two- to threefold - allowing researchers to use fewer nanotubes and a less powerful laser to kill tumors - an important consideration as scientists determine potential issues with the toxicity of nanotubes, since they remain in the body after treatment, Gmeiner said.

Current thermal ablation, or heat therapy, treatments for human tumors include radiofrequency ablation, which causes regional heating between two electrodes implanted in tissue but cannot be used to selectively distinguish cancer cells from healthy cells, like researchers hope they will be able to do with MWCNTs. In addition to the DNA-encased MWCNTs used in this study, other nanomaterials, such as single-walled carbon nanotubes and gold nanoshells, are also currently undergoing experimental investigation as cancer therapies.

Before treatment with MWCNTs can be tested in humans, studies need to be done to test the toxicity and safety, looking to see if the treatment causes any changes to organs over time, as well as the pharmacology of the treatment, to see what happens to the nanotubes, which are synthetic materials, over time.

Co-investigators for the study were Ralph D'Agostino Jr., Ph.D., John Olson, M.S., Evan Gomes, Ph.D., and doctoral student Supratim Ghosh, all of the School of Medicine; Samrat Dutta and Martin Guthold, Ph.D., of the Wake Forest University Department of Physics, and David L. Carroll, Ph.D., director of the Wake Forest University Center for Nanotechnology and Molecular Materials.

####

About Wake Forest University School of Medicine
Wake Forest University Baptist Medical Center (www.wfubmc.edu) is an academic health system comprised of North Carolina Baptist Hospital, Brenner Children’s Hospital, Wake Forest University Physicians, and Wake Forest University Health Sciences, which operates the university’s School of Medicine and Piedmont Triad Research Park. The system comprises 1,056 acute care, rehabilitation and long-term care beds and has been ranked as one of “America’s Best Hospitals” by U.S. News & World Report since 1993. Wake Forest Baptist is ranked 32nd in the nation by America’s Top Doctors for the number of its doctors considered best by their peers. The institution ranks in the top third in funding by the National Institutes of Health and fourth in the Southeast in revenues from its licensed intellectual property.

For more information, please click here

Contacts:
Media Relations Contacts:
Jessica Guenzel

(336) 716-3487

Bonnie Davis

(336) 716-4977

Shannon Koontz

(336) 716-2415

Copyright © Wake Forest University School of Medicine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Possible Futures

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Nanomedicine

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Nanobiotechnology

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Age-old malaria treatment found to improve nanoparticle delivery to tumors: Nanomedicine researchers find new use for 70-year-old drug November 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project