Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > DNA-Coated Nanotubes Help Kill Tumors Without Harm to Surrounding Tissue

Abstract:
Researchers at Wake Forest University School of Medicine have destroyed prostate cancer tumors in mice by injecting them with specially-coated, miniscule carbon tubes and then superheating the tubes with a brief zap of a laser.

DNA-Coated Nanotubes Help Kill Tumors Without Harm to Surrounding Tissue

Winston-Salem, NC | Posted on August 19th, 2009

The procedure, which used DNA-encased, multi-walled carbon nanotubes (MWCNTs) to treat human prostate cancer tumors in mice, left only a small burn on the skin that healed within days.

"That we could eradicate the tumor mass and not harm the tissue is truly amazing," said principal investigator William H. Gmeiner, Ph.D., a professor of cancer biology at the School of Medicine.

An advance copy of the study is now available in the online edition of ACS Nano and the full paper is scheduled to appear in a future print issue.

The researchers envision using the particles not only to kill tumors through heating, but also to target cancer drugs to the diseased area in patients.

"The long-term goal in the project is to be able to use the DNA-encased MWCNTs in multi-modality fashion for a variety of types of tumors," Gmeiner said.

Carbon nanotubes are sub-microscopic particles that have been the subject of intense cancer research. The MWCNTs used in the current study consist of several nanotubes that "fit inside one another like Russian dolls," Gmeiner said. The MWCNTs are injected into a tumor and then heated with laser-generated near-infrared radiation. For this study, the tubes were injected into human prostate cancer tumors being grown in mice. The radiation causes the tubes to vibrate, creating heat. That heat kills the cancer cells near the nanotubes. If there are enough nanotubes, the amount of heat generated can kill whole tumors.

For this study, researchers used MWCNTs encased with DNA, which prevented them from bunching up in the tumor, allowing them to heat more efficiently at a lower level of radiation and leaving the surrounding tissue virtually unharmed.

With funding from the National Cancer Institute and the North Carolina Biotechnology Center, researchers grew 24 prostate cancer tumors in 12 mice. They then separated the mice into groups receiving treatment with DNA-encased MWCNTs and laser, laser only, non-DNA-encased MWCNTs only, or no treatment.

The eight tumors treated with a single injection of DNA-encased MWCNTs and zapped with a 70-second burst from a three-watt laser were gone within six days after treatment. While a minor surface burn appeared at the site of laser treatment, it healed within a few days with antibiotic ointment, Gmeiner said.

The tumors in the other treatment groups showed no distinguishable reduction. Using the DNA-encased MWCNTs increased heat production two- to threefold - allowing researchers to use fewer nanotubes and a less powerful laser to kill tumors - an important consideration as scientists determine potential issues with the toxicity of nanotubes, since they remain in the body after treatment, Gmeiner said.

Current thermal ablation, or heat therapy, treatments for human tumors include radiofrequency ablation, which causes regional heating between two electrodes implanted in tissue but cannot be used to selectively distinguish cancer cells from healthy cells, like researchers hope they will be able to do with MWCNTs. In addition to the DNA-encased MWCNTs used in this study, other nanomaterials, such as single-walled carbon nanotubes and gold nanoshells, are also currently undergoing experimental investigation as cancer therapies.

Before treatment with MWCNTs can be tested in humans, studies need to be done to test the toxicity and safety, looking to see if the treatment causes any changes to organs over time, as well as the pharmacology of the treatment, to see what happens to the nanotubes, which are synthetic materials, over time.

Co-investigators for the study were Ralph D'Agostino Jr., Ph.D., John Olson, M.S., Evan Gomes, Ph.D., and doctoral student Supratim Ghosh, all of the School of Medicine; Samrat Dutta and Martin Guthold, Ph.D., of the Wake Forest University Department of Physics, and David L. Carroll, Ph.D., director of the Wake Forest University Center for Nanotechnology and Molecular Materials.

####

About Wake Forest University School of Medicine
Wake Forest University Baptist Medical Center (www.wfubmc.edu) is an academic health system comprised of North Carolina Baptist Hospital, Brenner Children’s Hospital, Wake Forest University Physicians, and Wake Forest University Health Sciences, which operates the university’s School of Medicine and Piedmont Triad Research Park. The system comprises 1,056 acute care, rehabilitation and long-term care beds and has been ranked as one of “America’s Best Hospitals” by U.S. News & World Report since 1993. Wake Forest Baptist is ranked 32nd in the nation by America’s Top Doctors for the number of its doctors considered best by their peers. The institution ranks in the top third in funding by the National Institutes of Health and fourth in the Southeast in revenues from its licensed intellectual property.

For more information, please click here

Contacts:
Media Relations Contacts:
Jessica Guenzel

(336) 716-3487

Bonnie Davis

(336) 716-4977

Shannon Koontz

(336) 716-2415

Copyright © Wake Forest University School of Medicine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanotubes/Buckyballs/Fullerenes

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Nanomedicine

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Announcements

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Nanobiotechnology

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project