Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NSF Emerging Frontiers' program supports development of smart materials based on study of fish

Virginia Tech Assistant Professor of Aerospace and Ocean Engineering Michael Philen is the principal investigator in an interdisciplinary, three-university, National Science Foundation study to create biologically inspired material systems that have hierarchically structured sensing, actuation, and intelligent control.

Credit: Virginia Tech photo
Virginia Tech Assistant Professor of Aerospace and Ocean Engineering Michael Philen is the principal investigator in an interdisciplinary, three-university, National Science Foundation study to create biologically inspired material systems that have hierarchically structured sensing, actuation, and intelligent control.

Credit: Virginia Tech photo

Abstract:
After engineers and scientists at Virginia Tech, Harvard and Drexel finish studying the locomotion of fish in water, Michael Phelps may find he still has a few new ways to increase his own world-breaking Olympic times.

NSF Emerging Frontiers' program supports development of smart materials based on study of fish

Blacksburg, VA | Posted on August 19th, 2009

The remarkable ability of fish to maneuver in tight places, or to hover in one area efficiently, or to accelerate in a seemingly effortless fashion has researchers wondering if they can create smarter materials that emulate the biology of these vertebrates.

With an eye towards homeland defense needs, engineers have also noted that fish through neuromasts or 'hairs' in the lateral line are able to sense very small changes in their watery environment that allows them to detect and track prey and to form hydrodynamic images of the environment.

Michael Philen, assistant professor of aerospace and ocean engineering (AOE) at Virginia Tech, has pulled together a team of researchers to study these abilities and hopefully develop biologically inspired material systems that have hierarchically structured sensing, actuation, and intelligent control. This research will lead to state-of-the-art advanced materials that can intelligently sense and actuate a network of distributed robust sensors and actuators.

Philen has prior experience in this area. As a post doctoral researcher at Penn State, he spent time on a three-year project with the Defense Army Research Projects Agency (DARPA) to develop a new structure/actuation system inspired by the mechanical, chemical, and electrical properties of plants.

Philen's proposal to the National Science Foundation's (NSF) Emerging Frontiers in Research and Innovation program to study fish to create smarter materials has received $1.95 million in funding. Philen's co-principal investigators are Harry Dorn, professor of chemistry, and Don Leo, associate dean of engineering, both at Virginia Tech. George Lauder, a professor of biology at Harvard, and James Tangorra, an assistant professor of mechanical engineering and mechanics at Drexel, round out the team.

Working together, the team will develop distributed sensors and actuators using nanotechnology, advanced composite technology, and smart polymeric materials for understanding the organization and structure of the control systems fish use for sensing and maneuvering.

With the inclusion of Harvard University, the research team also plans to develop a traveling exhibit on robotic fish that showcases the biology of aquatic propulsion, new actuator and sensing technologies and how these can be integrated to design a robotic fish. Harvard's Museum of Natural History (http://www.hmnh.harvard.edu/ with its links to "Kids and Families" and "Educators" receive some 33,000 school-aged visitors each year. They will have access to the robotic fish exhibit on line through this site.

Lisa McNair of Virginia Tech's Engineering Education Department, an expert on applying theories of interdisciplinary collaboration in research and teaching practices, will work with the Harvard Museum to assess the impact on the students' understanding of the biological mechanisms that allow fish to sense, swim and maneuver efficiently with minimal processing.

Philen explained that over the past 20 years experts such as George Lauder from Harvard have investigated a number of aspects of fish control systems for movement. These studies have shown that fish possess a two-gear muscular system that controls movement. One is for slow-speed movement and the other is for rapid movements and escape responses.

"Despite this progress, there is still very little understanding of the structure and organization of the hierarchical control systems in fish or how the actuation and sensing systems are integrated to perform steady and maneuvering locomotor tasks," Philen said. "Researchers have explored various system identification techniques for characterizing and understanding a number of biological systems, such as insect walking, renal autoregulation in rats, and locomotor oscillators in the spinal cords of lampreys. However, little or no research has been done on the hierarchal control systems found in fish."

The team of researchers plans to create a robotic fish-like underwater vehicle by integrating their biological investigations of the fish with engineering knowledge about sensors and actuators.

"We view this as an exciting opportunity to create a transformative leap in the development of new biologically inspired material systems," Philen said.

####

For more information, please click here

Contacts:
Lynn Nystrom

540-231-4371

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The next step in DNA computing: GPS mapping? May 6th, 2015

Improving Clinical Care and Patient Quality of Life in Advanced Liver Disease, d-LIVER Workshop, Milan, 27 May 2015 May 6th, 2015

Grafoid Acquires MuAnalysis Inc; Expands Its Advanced Materials Testing Capabilities May 6th, 2015

Winner Announced for NNI’s First ‘EnvisioNano’ Nanotechnology Image Contest May 6th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Thermometer-like device could help diagnose heart attacks May 6th, 2015

Winner Announced for NNI’s First ‘EnvisioNano’ Nanotechnology Image Contest May 6th, 2015

Discoveries

Attosecond physics: A new gateway to the microcosmos May 6th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

Thermometer-like device could help diagnose heart attacks May 6th, 2015

Materials/Metamaterials

Inkjet printing process for kesterite solar cells May 6th, 2015

'Microcombing' creates stronger, more conductive carbon nanotube films May 5th, 2015

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

Announcements

The next step in DNA computing: GPS mapping? May 6th, 2015

Improving Clinical Care and Patient Quality of Life in Advanced Liver Disease, d-LIVER Workshop, Milan, 27 May 2015 May 6th, 2015

Grafoid Acquires MuAnalysis Inc; Expands Its Advanced Materials Testing Capabilities May 6th, 2015

Winner Announced for NNI’s First ‘EnvisioNano’ Nanotechnology Image Contest May 6th, 2015

Homeland Security

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Optics, nanotechnology combined to create low-cost sensor for gases April 3rd, 2015

The Universitat Politècnica de València is coordinating a European project to develop a device for the quick and early diagnosis of cancer March 7th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

Sports

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Researchers use nanotechnology to engineer ACL replacements: Researchers created a tri-component, synthetic graft for reconstructing torn anterior cruciate ligaments December 30th, 2014

‘Small’ transformation yields big changes September 16th, 2014

CEA-Leti and CORIMA Team up on Force Sensors Integrated in Cycle Wheels to Measure Rider Power Output June 26th, 2014

Nanobiotechnology

A better way to build DNA scaffolds: McGill researchers devise new technique to produce long, custom-designed DNA strands May 6th, 2015

The next step in DNA computing: GPS mapping? May 6th, 2015

Improving Clinical Care and Patient Quality of Life in Advanced Liver Disease, d-LIVER Workshop, Milan, 27 May 2015 May 6th, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project