Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NSF Emerging Frontiers' program supports development of smart materials based on study of fish

Virginia Tech Assistant Professor of Aerospace and Ocean Engineering Michael Philen is the principal investigator in an interdisciplinary, three-university, National Science Foundation study to create biologically inspired material systems that have hierarchically structured sensing, actuation, and intelligent control.

Credit: Virginia Tech photo
Virginia Tech Assistant Professor of Aerospace and Ocean Engineering Michael Philen is the principal investigator in an interdisciplinary, three-university, National Science Foundation study to create biologically inspired material systems that have hierarchically structured sensing, actuation, and intelligent control.

Credit: Virginia Tech photo

Abstract:
After engineers and scientists at Virginia Tech, Harvard and Drexel finish studying the locomotion of fish in water, Michael Phelps may find he still has a few new ways to increase his own world-breaking Olympic times.

NSF Emerging Frontiers' program supports development of smart materials based on study of fish

Blacksburg, VA | Posted on August 19th, 2009

The remarkable ability of fish to maneuver in tight places, or to hover in one area efficiently, or to accelerate in a seemingly effortless fashion has researchers wondering if they can create smarter materials that emulate the biology of these vertebrates.

With an eye towards homeland defense needs, engineers have also noted that fish through neuromasts or 'hairs' in the lateral line are able to sense very small changes in their watery environment that allows them to detect and track prey and to form hydrodynamic images of the environment.

Michael Philen, assistant professor of aerospace and ocean engineering (AOE) at Virginia Tech, has pulled together a team of researchers to study these abilities and hopefully develop biologically inspired material systems that have hierarchically structured sensing, actuation, and intelligent control. This research will lead to state-of-the-art advanced materials that can intelligently sense and actuate a network of distributed robust sensors and actuators.

Philen has prior experience in this area. As a post doctoral researcher at Penn State, he spent time on a three-year project with the Defense Army Research Projects Agency (DARPA) to develop a new structure/actuation system inspired by the mechanical, chemical, and electrical properties of plants.

Philen's proposal to the National Science Foundation's (NSF) Emerging Frontiers in Research and Innovation program to study fish to create smarter materials has received $1.95 million in funding. Philen's co-principal investigators are Harry Dorn, professor of chemistry, and Don Leo, associate dean of engineering, both at Virginia Tech. George Lauder, a professor of biology at Harvard, and James Tangorra, an assistant professor of mechanical engineering and mechanics at Drexel, round out the team.

Working together, the team will develop distributed sensors and actuators using nanotechnology, advanced composite technology, and smart polymeric materials for understanding the organization and structure of the control systems fish use for sensing and maneuvering.

With the inclusion of Harvard University, the research team also plans to develop a traveling exhibit on robotic fish that showcases the biology of aquatic propulsion, new actuator and sensing technologies and how these can be integrated to design a robotic fish. Harvard's Museum of Natural History (http://www.hmnh.harvard.edu/ with its links to "Kids and Families" and "Educators" receive some 33,000 school-aged visitors each year. They will have access to the robotic fish exhibit on line through this site.

Lisa McNair of Virginia Tech's Engineering Education Department, an expert on applying theories of interdisciplinary collaboration in research and teaching practices, will work with the Harvard Museum to assess the impact on the students' understanding of the biological mechanisms that allow fish to sense, swim and maneuver efficiently with minimal processing.

Philen explained that over the past 20 years experts such as George Lauder from Harvard have investigated a number of aspects of fish control systems for movement. These studies have shown that fish possess a two-gear muscular system that controls movement. One is for slow-speed movement and the other is for rapid movements and escape responses.

"Despite this progress, there is still very little understanding of the structure and organization of the hierarchical control systems in fish or how the actuation and sensing systems are integrated to perform steady and maneuvering locomotor tasks," Philen said. "Researchers have explored various system identification techniques for characterizing and understanding a number of biological systems, such as insect walking, renal autoregulation in rats, and locomotor oscillators in the spinal cords of lampreys. However, little or no research has been done on the hierarchal control systems found in fish."

The team of researchers plans to create a robotic fish-like underwater vehicle by integrating their biological investigations of the fish with engineering knowledge about sensors and actuators.

"We view this as an exciting opportunity to create a transformative leap in the development of new biologically inspired material systems," Philen said.

####

For more information, please click here

Contacts:
Lynn Nystrom

540-231-4371

Copyright © Virginia Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Materials/Metamaterials

Relax, just break it July 20th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Homeland Security

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Sports

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

Synthetic “Melanin” Could Act as a Natural Sunscreen: The pigmentlike nanoparticles could protect cells from the sun’s damaging rays July 1st, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Nanobiotechnology

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Arrowhead Presents New Clinical Data on ARO-AAT at Alpha-1 National Education Conference July 1st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project