Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Cornell dots' make the world's tiniest laser

Schematic (not to scale) of the modified Cornell dot used to create the world's smallest laser. The particle, 44 nanometers in diameter, consists of a silica shell surrounding a 14-nanometer gold core. Energy bouncing between dye molecules and a plasmon oscillation in electrons in the gold amplifies the light output.

Provided/Wiesner Lab, Cornell University
Schematic (not to scale) of the modified Cornell dot used to create the world's smallest laser. The particle, 44 nanometers in diameter, consists of a silica shell surrounding a 14-nanometer gold core. Energy bouncing between dye molecules and a plasmon oscillation in electrons in the gold amplifies the light output. Provided/Wiesner Lab, Cornell University

Abstract:
Researchers have modified nanoparticles known as "Cornell dots" to make the world's tiniest laser -- so small it could be incorporated into microchips to serve as a light source for photonic circuits. The device may also have applications for sensors, solar collectors and in biomedicine.

'Cornell dots' make the world's tiniest laser

Ithaca, NY | Posted on August 18th, 2009

The original Cornell dots, created by Ulrich Wiesner, the Spencer T. Olin Professor of Engineering at Cornell, consist of a core of dye molecules enclosed in a silica shell to create an unusually luminous particle. The new work by researchers at Norfolk (Virginia) State University (NSU), Purdue University and Cornell uses what Wiesner calls "hybrid Cornell dots," which have a gold core surrounded by a silica shell in which dye molecules are embedded.

The research is reported in the Aug. 16 online issue of the journal Nature and will appear in a coming print issue.

Using nanoparticles 44 nanometers (nm -- one billionth of a meter or about three atoms in a row) wide, the device is the smallest nanolaser reported to date, and the first operating in visible light wavelengths, the researchers said.

"This opens an interesting playground in terms of miniaturization," said Wiesner. "For the first time we have a building block a factor of 10 smaller than the wavelength of light."

An optical laser this small is impossible because a laser develops its power by bouncing light back and forth in a tuned cavity whose length must be at least half the wavelength of the light to be emitted. In the first tests of the new device, the light emitted had a wavelength of 531 nm, in the green portion of the visible spectrum.

In a conventional laser, molecules are excited by an outside source of energy, which may be light, electricity or a chemical reaction. Some molecules spontaneously release their energy as photons of light, which bounce back and forth between two reflectors, in turn triggering more molecules to emit photons.

In the new device, dye molecules in the nanoparticle are excited by a pumping laser. A few molecules spontaneously release their added energy to generate a plasmon -- a wave motion of free electrons at an optical frequency -- in the gold core. In the tiny space, the dye molecules and the gold core are coupled by electric fields, explains Purdue co-author Vladimir Shalaev.

Oscillations of the plasmon in turn trigger more dye molecules to release their energy, which further pumps up the plasmon, creating a "spaser" (surface plasmon amplification by stimulated emission of radiation). When the energy of the system reaches a threshold the electric field collapses, releasing its energy as a photon. The size of the core -- 14 nm in diameter -- is chosen to set up a resonance that reinforces a wave corresponding to the desired 531 nm light output.

Tests at NSU indicate that the lasing effect occurs within each Cornell dot and is not a phenomenon of a collection of the nanoparticles working together, making this unquestionably the world's smallest laser.

"Some people argue that the ability to produce a surface plasmon in this way will be even more useful," added NSU professor and lead author Mikhail Noginov. It has been suggested that plasmons could be used to send signals across a microchip at the speed of light -- much faster than electrons in wires -- but in less space than photonic circuits need.

The idea of a spaser was first proposed in 2003 by physicists Mark Stockman at Georgia State University and David Bergman at Tel Aviv University. The theory behind the new approach was developed by Evgenii Narimanov at Purdue.

The work is funded by the National Science Foundation, with additional funding from the U.S. Army Research Office.

####

About Cornell University
Cornell University is a private university located in Ithaca, New York, USA, that is a member of the Ivy League.

With consistent top 15 rankings, Cornell is largely considered one of the preeminent Universities in the world. Cornell counts more than 255,000 living alumni, 28 Rhodes Scholars and 40 Nobel laureates affiliated with the university as faculty or students. The student body consists of over 13,000 undergraduate and 6,000 graduate students from all fifty states and one hundred and twenty-two countries. Cornell produces more graduates that go on to become doctors than any other university in the USA. It also produces the largest number of graduates in the life sciences who continue for Ph.D. degrees, and is ranked fourth in the world in producing the largest number of graduates who go on to pursue Ph.D.s at American institutions. Research is a central element of the university's mission; in 2006 Cornell spent $649 million on research and development. In 2007, Cornell ranked fifth among universities in the U.S. in fund-raising, collecting $406.2 million in private support.

From Wikipedia, the free encyclopedia

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanomedicine

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Sensors

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Announcements

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Cacao Seed Extract Used in Production of Catalytic Nanoparticles April 27th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Quantum Dots/Rods

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

Promising future of quantum dots explored in conference: ‘20 Years of Quantum Dots at Los Alamos’ runs April 12-16 April 13th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Nanobiotechnology

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Rafts on the cell membrane: Researchers from TU Wien (Vienna) shed light on a big secret of cell membranes: The 'lipid rafts', which have been believed to move within the cell membrane, do not really exist April 21st, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project