Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Cornell dots' make the world's tiniest laser

Schematic (not to scale) of the modified Cornell dot used to create the world's smallest laser. The particle, 44 nanometers in diameter, consists of a silica shell surrounding a 14-nanometer gold core. Energy bouncing between dye molecules and a plasmon oscillation in electrons in the gold amplifies the light output.

Provided/Wiesner Lab, Cornell University
Schematic (not to scale) of the modified Cornell dot used to create the world's smallest laser. The particle, 44 nanometers in diameter, consists of a silica shell surrounding a 14-nanometer gold core. Energy bouncing between dye molecules and a plasmon oscillation in electrons in the gold amplifies the light output. Provided/Wiesner Lab, Cornell University

Abstract:
Researchers have modified nanoparticles known as "Cornell dots" to make the world's tiniest laser -- so small it could be incorporated into microchips to serve as a light source for photonic circuits. The device may also have applications for sensors, solar collectors and in biomedicine.

'Cornell dots' make the world's tiniest laser

Ithaca, NY | Posted on August 18th, 2009

The original Cornell dots, created by Ulrich Wiesner, the Spencer T. Olin Professor of Engineering at Cornell, consist of a core of dye molecules enclosed in a silica shell to create an unusually luminous particle. The new work by researchers at Norfolk (Virginia) State University (NSU), Purdue University and Cornell uses what Wiesner calls "hybrid Cornell dots," which have a gold core surrounded by a silica shell in which dye molecules are embedded.

The research is reported in the Aug. 16 online issue of the journal Nature and will appear in a coming print issue.

Using nanoparticles 44 nanometers (nm -- one billionth of a meter or about three atoms in a row) wide, the device is the smallest nanolaser reported to date, and the first operating in visible light wavelengths, the researchers said.

"This opens an interesting playground in terms of miniaturization," said Wiesner. "For the first time we have a building block a factor of 10 smaller than the wavelength of light."

An optical laser this small is impossible because a laser develops its power by bouncing light back and forth in a tuned cavity whose length must be at least half the wavelength of the light to be emitted. In the first tests of the new device, the light emitted had a wavelength of 531 nm, in the green portion of the visible spectrum.

In a conventional laser, molecules are excited by an outside source of energy, which may be light, electricity or a chemical reaction. Some molecules spontaneously release their energy as photons of light, which bounce back and forth between two reflectors, in turn triggering more molecules to emit photons.

In the new device, dye molecules in the nanoparticle are excited by a pumping laser. A few molecules spontaneously release their added energy to generate a plasmon -- a wave motion of free electrons at an optical frequency -- in the gold core. In the tiny space, the dye molecules and the gold core are coupled by electric fields, explains Purdue co-author Vladimir Shalaev.

Oscillations of the plasmon in turn trigger more dye molecules to release their energy, which further pumps up the plasmon, creating a "spaser" (surface plasmon amplification by stimulated emission of radiation). When the energy of the system reaches a threshold the electric field collapses, releasing its energy as a photon. The size of the core -- 14 nm in diameter -- is chosen to set up a resonance that reinforces a wave corresponding to the desired 531 nm light output.

Tests at NSU indicate that the lasing effect occurs within each Cornell dot and is not a phenomenon of a collection of the nanoparticles working together, making this unquestionably the world's smallest laser.

"Some people argue that the ability to produce a surface plasmon in this way will be even more useful," added NSU professor and lead author Mikhail Noginov. It has been suggested that plasmons could be used to send signals across a microchip at the speed of light -- much faster than electrons in wires -- but in less space than photonic circuits need.

The idea of a spaser was first proposed in 2003 by physicists Mark Stockman at Georgia State University and David Bergman at Tel Aviv University. The theory behind the new approach was developed by Evgenii Narimanov at Purdue.

The work is funded by the National Science Foundation, with additional funding from the U.S. Army Research Office.

####

About Cornell University
Cornell University is a private university located in Ithaca, New York, USA, that is a member of the Ivy League.

With consistent top 15 rankings, Cornell is largely considered one of the preeminent Universities in the world. Cornell counts more than 255,000 living alumni, 28 Rhodes Scholars and 40 Nobel laureates affiliated with the university as faculty or students. The student body consists of over 13,000 undergraduate and 6,000 graduate students from all fifty states and one hundred and twenty-two countries. Cornell produces more graduates that go on to become doctors than any other university in the USA. It also produces the largest number of graduates in the life sciences who continue for Ph.D. degrees, and is ranked fourth in the world in producing the largest number of graduates who go on to pursue Ph.D.s at American institutions. Research is a central element of the university's mission; in 2006 Cornell spent $649 million on research and development. In 2007, Cornell ranked fifth among universities in the U.S. in fund-raising, collecting $406.2 million in private support.

From Wikipedia, the free encyclopedia

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Possible Futures

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Nanomedicine

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Arrowhead to Present at Jefferies 2015 Healthcare Conference May 27th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Sensors

SouthWest NanoTechnologies Introduces AgeNT™ Transparent Conductor System at SID Display Week, Booth #543 May 28th, 2015

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Announcements

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Quantum Dots/Rods

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

Toward 'green' paper-thin, flexible electronics May 20th, 2015

Electricity generating nano-wizards: Quantum dots are an ideal nanolab to study the means to turning heat into electricity May 18th, 2015

QD Vision to Showcase Quantum Dot “Firsts” at Display Week 2015: Executives will present, demo current and future quantum dot technology May 13th, 2015

Nanobiotechnology

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Solar/Photovoltaic

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project