Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New material for nanoscale-computer chips

Researchers cross organic and non-organic nano wires like Mikado sticks and thereby make nanoscale prototype computer electronics. Image by Asmus Dohn.
Researchers cross organic and non-organic nano wires like Mikado sticks and thereby make nanoscale prototype computer electronics. Image by Asmus Dohn.

Abstract:
New data from Chinese-Danish collaboration shows that organic nanoscale wires could be an alternative to silicon in computer chips. The discovery has just been published in the respected scientific journal, Advanced Materials.

New material for nanoscale-computer chips

Copenhagen | Posted on August 18th, 2009

Nanochemists from the Chinese Academy of Sciences and the Nano-Science Center, Department of Chemistry have developed nanoscale electric contacts out of organic and inorganic nanowires. In the contact they have crossed the wires like Mikado sticks and coupled several contacts together in an electric circuit. In this way they have produced prototype computer electronics on the nanoscale.

Alternative to silicon computers

Today the foundation of our computers, mobile phones and other electronic apparatus is silicon transistors. A transistor is in principal an on- and off- contact and there are millions of tiny transistors on every computer chip. However, we are reaching the limit for how small we can make transistors out of silicon.

We already use various organic materials in, for example, flat screens, such as OLED (Organic Light Emitting Diode). The new results show how small and advanced devices made of organic materials can become. Thomas Bjørnholm, Director of the Nano-Science Center, Department of Chemistry at University of Copenhagen explains:

"We have succeeded in placing several transistors consisting of nanowires together on a nano device. It is a first step towards realisation of future electronic circuitry based on organic materials - a possible substitute for today's silicon-based technologies. This offers the possibility of making computers in different ways in the future."

Danish-Chinese nanoelectronics

The researchers have used organic nanowires combined with the tin oxide nanowires in a so-called hybrid circuit. As in a Mikado game, the nanowires cross in a device consisting of 4-6 active transistor moieties. The devices have a low operational current, high mobility and good stability and that is essential in order for the material to be able to compete with silicon.

Professor Wenping Hu, Chinese Academy of Sciences is excited over the results:

"This work is the first significant result of our collaboration with the researchers from the Nano-Science Center. It is a good starting point for our new Danish-Chinese research centre for molecular nano-electronics and it underlines the fact that we can complement each other and that together we can achieve exciting and important results."

####

About University of Copenhagen
With over 37,000 students and more than 7,000 employees, the University of Copenhagen is the largest institution of research and education in Denmark. The purpose of the University – to quote the University Statute – is to ’conduct research and provide further education to the highest academic level’.

Approximately one hundred different institutes, departments, laboratories, centres, museums, etc., form the nucleus of the University, where professors, lecturers and other academic staff, as well as most of the technical and administrative personnel, carry out their daily work, and where teaching takes place.

These activities take place in various environments ranging from the plant world of the Botanical Gardens, through high-technology laboratories and auditoriums, to the historic buildings and lecture rooms of Frue Plads and other locations.

On 1 January 2007, the University merged with The Royal Veterinary and Agricultural University and The Danish University of Pharmaceutical Sciences. The two universities are now faculties at the University of Copenhagen.

For more information, please click here

Contacts:
University of Copenhagen Contact:
Communications Division
DK-1017 Copenhagen K
Nørregade 10, P.O. Box 2177
+45 35 32 42 61

Professor Thomas Bjørnholm

+45 35 32 18 35

Communication Officer
Gitte Frandsen

+45 28 75 04 58

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Chip Technology

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Nanoelectronics

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE