Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Flat bacteria in nanoslits

Abstract:
It appears that bacteria can squeeze through practically anything. In extremely small nanoslits they take on a completely new flat shape. Even in this squashed form they continue to grow and divide at normal speeds. This has been demonstrated by research carried out at TU Delft's Kavli Institute of Nanoscience. The results will be appearing this week in the online edition of the prestigious scientific journal Proceedings of the National Academy of Sciences (PNAS) and as the cover article in the September 1 print issue of PNAS.

Flat bacteria in nanoslits

Delft, Netherlands | Posted on August 17th, 2009

Using nanofabrication, Delft scientists made minuscule channels, measuring a micrometer or less in width and 50 micrometer in length, on a silicon chip between tiny chambers containing bacteria. Subsequently they studied the behaviour of Escherichia. coli and Bacillus. subtilis bacteria in this artificial environment. The bacteria were genetically modified so that they were fluorescent and could easily be followed using a special microscope.

Squashed flat

Under normal circumstances these bacteria swim and this research showed that they retain this motility in surprisingly narrow channels. They swam just as actively as usual even in channels that were only 30 percent wider than their own diameter (of about 1 micrometer). In even narrower submicron channels the bacteria stopped swimming, and an unexpected effect took place: The bacteria were able to make their way through ultra-narrow passageways in another manner, that is by growing and dividing. The researchers found that this way, E. coli bacteria could squeeze through narrow slits that were only half their own diameter in width. Post-doctoral researcher, Jaan Männik: "This took us totally by surprise. The bacteria become completely flattened. They have all sorts of peculiar shapes both in the channels and when they finally come out at the other side. What is really remarkable, however, is that in the channels, and therefore under extreme confinement, they continue to grow and divide at normal speeds. Apparently their shape is not a determining factor for these activities."

Subterranean bacteria, membrane filters and pacemakers

The flat bacteria form a new phenotype,. According to the researchers, this form may be more common than one might think. The bulk of the biomass on Earth is to be found under the ground. Here, bacteria often live in spaces that measure around a micrometer. The study suggests that many more bacteria may be present in small spaces than was always thought. This may have direct consequences, for example for membrane filters (with tiny pores) for water treatment and for medical applications, such as pacemakers or other implants, where bacteria must be excluded as much as possible. The results of the study also provide more fundamental understanding of the behaviour of bacteria that are 'locked up' in nanosized environments.

Multidisciplinary

Little is known about the effect of this sort of confinement on the behaviour of bacteria as yet. According to Prof. Cees Dekker, this has to do with the required combination of very different disciplines: "Microbiologists do not generally engage in nanofabrication, which enables us to examine this area under controlled conditions, and nanoscientists usually know little about the behaviour of bacteria. My colleague, Juan Keymer, an evolutionary biologist, and I are now trying to combine these disciplines in our new Department of Bionanoscience. And this is leading to all sorts of new discoveries."

The research results will be appearing in the week beginning 17 August in the online edition of the scientific journal, Proceedings of the National Academy of Sciences (USA). The article will also be featured as the cover article in the print version of PNAS to be published on 1 September 2009.

####

For more information, please click here

Contacts:
Prof. Cees Dekker

31-015-278-6094

Copyright © Delft University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

Discoveries

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

The random raman laser: A new light source for the microcosmos May 4th, 2015

From brittle to plastic in 1 breath: Rice University theorists show environments can alter 2-D materials' basic properties May 4th, 2015

Nanoparticles in consumer products can significantly alter normal gut microbiome May 4th, 2015

Announcements

Testing Facility for Graphene Enhanced Composite Pipes May 5th, 2015

Arrowhead Completes Dosing Healthy Volunteers and Initiates Transition to Patients in Phase 1 Study of ARC-AAT May 5th, 2015

Silicon Storage Technology and GLOBALFOUNDRIES Announce Qualification of Automotive Grade 55nm Embedded Flash Memory Technology May 5th, 2015

Iranian Scientists Present Model to Study Mechanical Vibrations of Structures Containing Nanocomposites May 5th, 2015

Water

Production of Industrial Nano-Membrane for Water, Wastewater Purification Device in Iran May 2nd, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Iranian Scientists Produce Magnetic Recyclable Photocatalyst to Purify Polluted Water April 8th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project