Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Secrets of the sandcastle worm could yield a powerful medical adhesive

The sandcastle worm makes a protective home out of beads of zirconium oxide in a lab. At the University of Utah, scientists have created a synthetic version of this glue for possible use in repairing fractured bones.

Credit: Fred Hayes
The sandcastle worm makes a protective home out of beads of zirconium oxide in a lab. At the University of Utah, scientists have created a synthetic version of this glue for possible use in repairing fractured bones.

Credit: Fred Hayes

Abstract:
Scientists have copied the natural glue secreted by a tiny sea creature called the sandcastle worm in an effort to develop a long-sought medical adhesive needed to repair bones shattered in battlefield injuries, car crashes and other accidents. They reported on the adhesive here today at the 238th National Meeting of the American Chemical Society (ACS).

Secrets of the sandcastle worm could yield a powerful medical adhesive

Washington, DC | Posted on August 17th, 2009

"This synthetic glue is based on complex coacervates, an ideal but so far unexploited platform for making injectable adhesives," says Russell Stewart, Ph.D. "The idea of using natural adhesives in medicine is an old one dating back to the first investigations of mussel adhesives in the 1980s. Yet almost 30 years later there are no adhesives based on

The traditional method of repairing shattered bones is to use mechanical connectors like nails, pins and metal screws for support until they can bear weight. But achieving and maintaining alignment of small bone fragments using screws and wires is challenging, Stewart said. For precise reconstruction of small bones, health officials have acknowledged that a biocompatible, biodegradable adhesive could be valuable because it would reduce metal hardware in the body while maintaining proper alignment of fractures.

Stewart and colleagues duplicated the glue that sandcastle worms (Phragmatopoma californica) use while building their homes in intertidal surf by sticking together bits of sand and broken sea shells. The inch-long marine worm had to overcome several adhesive challenges in order to glue together its underwater house, and its ingenuity has served as a recipe for Stewart's research team in developing the synthetic adhesive.

Stewart's challenge was to devise a water-based adhesive that remained insoluble in wet environments and was able to bond to wet objects. The team also concentrated on key details of the natural adhesive solidification process — a poorly timed hardening of the glue would make it useless, Stewart said. They learned the natural glue sets in response to changes in pH, a mechanism that was copied into the synthetic glue.

The new glue, says Stewart, a bioengineer at the University of Utah in Salt Lake City, has passed toxicity studies in cell culture. It is at least as strong as Super Glue and is twice as strong as the natural adhesive it mimics, he notes.

"We recognized that the mechanism used by the sandcastle worm is really a perfect vehicle for producing an underwater adhesive," Stewart said. "This glue, just like the worm's glue, is a fluid material that, although it doesn't mix with water, is water soluble."

Stewart has begun pilot studies focused on delivering bioactive molecules in the adhesive that could allow it to fix bone fragments and deliver medicines to the fracture site, such as antibiotics, pain relievers or compounds that might accelerate healing.

"We are very optimistic about this synthetic glue," he said. "Biocompatibility is one of the major challenges of creating an adhesive like this. Anytime you put something synthetic into the body, there's a chance the body will respond to it and damage the surrounding tissue. That's something we will monitor, but we've seen no indication right now that it will be a problem."

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
Michael Bernstein

202-872-6042

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video - Watch a narrated video of the sandcastle worm building a home in a lab using bits of silicon.

Video - Russell Stewart's adhesive glues together submerged pieces of bone. Watch a narrated video of the adhesive at work.

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Videos/Movies

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Materials/Metamaterials

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Nanodiamonds Are Forever: A UCSB professor’s research examines 13,000-year-old nanodiamonds from multiple locations across three continents August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE