Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Camera flash turns graphite oxide into graphene

Abstract:
An insulator can now be transformed to conduct electricity by an ordinary camera flash.

Camera flash turns graphite oxide into graphene

Evanston, IL | Posted on August 15th, 2009

A McCormick School of Engineering and Applied Science professor and his group have found a new way of turning graphite oxide a low cost insulator made by oxidizing graphite powder into graphene, a hotly studied material that conducts electricity, which scientists believe could be used to produce low-cost carbon-based transparent and flexible electronics.

Previous processes to reduce graphite oxide relied on toxic chemicals or high temperature treatment. The idea for a simple new process came in a burst of inspiration: Can a camera flash instantly heat up the graphite oxide and turn it into graphene? The process, invented by Jiaxing Huang, assistant professor of materials science and engineering, and his graduate student Laura J. Cote and postdoc Rodolfo Cruz-Silva, was published in the August 12 issue of the Journal of the American Chemical Society.

Materials scientists previously have used high-temperature heating or chemical reduction to produce graphene from graphite oxide. But these techniques could be problematic when graphite oxide is mixed with something else, such as a polymer, because the polymer component may not survive the high-temperature treatment or could block the reducing chemical from reacting with graphite oxide

In Huang's flash reduction process, researchers simply hold a consumer camera flash over the graphite oxide and, a flash later, the material is now a piece of fluffy graphene.

"The light pulse offers very efficient heating through the photothermal process, which is rapid, energy efficient, and chemical-free," he says.

When using a light pulse, photothermal heating not only reduces the graphite oxide, it also fuses the insulating polymer with the graphene sheets, resulting in a welded conducting composite.

Using patterns printed on a simple overhead transparency film as a photo-mask, flash reduction creates patterned graphene films. This process creates electronically conducting patterns on the insulating graphite oxide film essentially a flexible circuit.

The group hopes to next create smaller circuits on a single graphite oxide sheet at the single-atom layer level. (The current process has been performed only on thicker films.)

"If we can make a nano circuit on a single piece of graphite oxide," Huang says. "It will hold great promise for patterning electronic devices."

This research was supported by the National Science Foundation.

####

About Northwestern University
Northwestern University combines innovative teaching and pioneering research in a highly collaborative environment that transcends traditional academic boundaries. It provides students and faculty exceptional opportunities for intellectual, personal and professional growth in a setting enhanced by the richness of Chicago.

For more information, please click here

Contacts:
Evanston: 847-491-3741
Chicago: 312-503-8649

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Thin films

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Possible Futures

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Chip Technology

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Discoveries

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project