Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Camera flash turns graphite oxide into graphene

Abstract:
An insulator can now be transformed to conduct electricity by an ordinary camera flash.

Camera flash turns graphite oxide into graphene

Evanston, IL | Posted on August 15th, 2009

A McCormick School of Engineering and Applied Science professor and his group have found a new way of turning graphite oxide — a low cost insulator made by oxidizing graphite powder — into graphene, a hotly studied material that conducts electricity, which scientists believe could be used to produce low-cost carbon-based transparent and flexible electronics.

Previous processes to reduce graphite oxide relied on toxic chemicals or high temperature treatment. The idea for a simple new process came in a burst of inspiration: Can a camera flash instantly heat up the graphite oxide and turn it into graphene? The process, invented by Jiaxing Huang, assistant professor of materials science and engineering, and his graduate student Laura J. Cote and postdoc Rodolfo Cruz-Silva, was published in the August 12 issue of the Journal of the American Chemical Society.

Materials scientists previously have used high-temperature heating or chemical reduction to produce graphene from graphite oxide. But these techniques could be problematic when graphite oxide is mixed with something else, such as a polymer, because the polymer component may not survive the high-temperature treatment or could block the reducing chemical from reacting with graphite oxide

In Huang's flash reduction process, researchers simply hold a consumer camera flash over the graphite oxide and, a flash later, the material is now a piece of fluffy graphene.

"The light pulse offers very efficient heating through the photothermal process, which is rapid, energy efficient, and chemical-free," he says.

When using a light pulse, photothermal heating not only reduces the graphite oxide, it also fuses the insulating polymer with the graphene sheets, resulting in a welded conducting composite.

Using patterns printed on a simple overhead transparency film as a photo-mask, flash reduction creates patterned graphene films. This process creates electronically conducting patterns on the insulating graphite oxide film — essentially a flexible circuit.

The group hopes to next create smaller circuits on a single graphite oxide sheet at the single-atom layer level. (The current process has been performed only on thicker films.)

"If we can make a nano circuit on a single piece of graphite oxide," Huang says. "It will hold great promise for patterning electronic devices."

This research was supported by the National Science Foundation.

####

About Northwestern University
Northwestern University combines innovative teaching and pioneering research in a highly collaborative environment that transcends traditional academic boundaries. It provides students and faculty exceptional opportunities for intellectual, personal and professional growth in a setting enhanced by the richness of Chicago.

For more information, please click here

Contacts:
Evanston: 847-491-3741
Chicago: 312-503-8649

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK announces expansion of its global sales and service activities in China and USA April 15th, 2014

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Thin films

Industry Veteran Fergus Clarke Joins Picodeon as CEO: Appointment comes as Picodeon prepares for growth April 8th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

High-quality nanometric bilayers prepared by aqueous solutions March 26th, 2014

A new concept for manufacturing wrinkling patterns on hard-nano-film/soft-matter-substrate March 24th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Engineers develop new materials for hydrogen storage April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Chip Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Clean Shot at Manufacturing Course…For Less April 9th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Discoveries

Engineers develop new materials for hydrogen storage April 15th, 2014

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Announcements

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE