Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Nanospears' could lead to better solar cells, lasers, lighting

These red zinc oxide "nanospears" developed by Missouri S&T researchers grow on a surface of silicon. (Illustration provided by Dr. Jay A. Switzer.)
These red zinc oxide "nanospears" developed by Missouri S&T researchers grow on a surface of silicon. (Illustration provided by Dr. Jay A. Switzer.)

Abstract:
Growing - and precisely aligning - microscopic, spear-shaped zinc oxide crystals on a surface of single-crystal silicon, researchers at Missouri University of Science and Technology may have developed a method to make more efficient solar cells.

'Nanospears' could lead to better solar cells, lasers, lighting

Rolla, MO | Posted on August 15th, 2009

Dr. Jay A. Switzer and his colleagues at Missouri S&T report in the journal Chemistry of Materials that their simple, inexpensive process could also lead to new materials for ultraviolet lasers, solid-state lighting and piezoelectric devices.

"It's kind of like growing rock candy crystals on a string," says Switzer, the Donald L. Castleman/Foundation for Chemical Research Professor of Discovery at Missouri S&T. But instead of using sugar water and string, Switzer's team grows the zinc oxide "nanospears" on the single-crystal silicon placed in a beaker filled with an alkaline solution saturated with zinc ions. The process yields tilted, single-crystal, spear-shaped rods that grow out of the silicon surface, like tiny spikes.

The spears are about 100-200 nanometers in diameter - hundreds of times smaller than the width of a human hair - and about 1 micrometer in length. A nanometer - visible only with the aid of a high-power electron microscope - is one billionth of a meter, and some nanomaterials are only a few atoms in size.

The research is reported today (Tuesday, Aug. 11) in Chemistry of Materials' online ASAP ("as soon as publishable") section and will appear in an upcoming issue.

Zinc oxide is a semiconductor that possesses some unusual physical properties, Switzer says. The material both absorbs and emits light, so it could be used in solar cells to absorb sunshine as well as in lasers or solid-state lighting as an emitter of light.

Silicon is also a semiconductor, but it absorbs light at a different part of the spectrum than zinc oxide. By growing zinc oxide on top of the silicon, "you're putting two semiconductors on top of each other," thereby widening the spectrum from which a solar cell could draw light, Switzer says.

"You can absorb more light and possibly get more power out" with a zinc oxide-silicon solar cell, he says.

Previous efforts to grow zinc oxide on silicon have been limited to expensive ultra-high-vacuum methods, and because of silicon's high reactivity, it's been impossible to deposit the zinc oxide directly, without the use of a third material as a buffer. In addition, previous attempts to align the two materials epitaxially - or perfectly one on top of the other - have been unsuccessful until now. By tilting the nanospears 51 degrees, Switzer and his team have reduced the mismatch from 40 percent to just 0.2 percent, a near-perfect alignment.

Epitaxially aligning the zinc oxide and silicon is important to ensure higher efficiency, Switzer says.

Switzer's research is supported through a four-year, $700,000 grant from the Department of Energy's Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

Switzer's co-authors for the Chemistry of Materials paper are Guojun Mu and Rakesh V. Gudavarthy, both graduate students in the Chemistry Department at Missouri S&T, and Dr. Elizabeth A. Kulp, a postdoctoral associate at Missouri S&T.

####

About Missouri University of Science and Technology
Founded in 1870 as one of the first technological schools west of the Mississippi, Missouri S&T today stands poised to meet the challenges of a global, green economy.

Our name may be new, but our commitment to technological education is unchanging. As a land-grant and space-grant institution, we produced the engineers, scientists and innovators who helped drive the Industrial Revolution and propel the Space Age.

For more information, please click here

Contacts:
Office of Public Relations
1201 N. State St.
105 Campus Support Facility
Rolla, MO 65409-0220
Phone: 573-341-4328
Fax: 573-341-6157

Copyright © Missouri University of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Possible Futures

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

Discoveries

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Making sense of metallic glass February 9th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

Announcements

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Superconductivity: Footballs with no resistance - Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications February 9th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Energy

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

February 4th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Scientists create laser-activated superconductor February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Solar/Photovoltaic

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

An alternative to platinum: Iron-nitrogen compounds as catalysts in graphene January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic