Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bionanomachines: Proteins as resistance fighters

Fluorescent image of single motor proteins (left): Motion of two diffusing kinesin molecules (green) on a microtubule (red) shown as a time series kymograph. Schematic (right): By dragging diffusing kinesin molecules with laser tweezers over a microtubule, the friction force between the motor and its microtubule track can be measured very precisely. (Image: MPI-CBG, BIOTEC)
Fluorescent image of single motor proteins (left): Motion of two diffusing kinesin molecules (green) on a microtubule (red) shown as a time series kymograph. Schematic (right): By dragging diffusing kinesin molecules with laser tweezers over a microtubule, the friction force between the motor and its microtubule track can be measured very precisely. (Image: MPI-CBG, BIOTEC)

Abstract:
Scientists of Dresden BIOTEC and MPI-CBG measure drag/friction of single molecules

Bionanomachines: Proteins as resistance fighters

Dresden | Posted on August 14th, 2009

Friction limits the speed and efficiency of macroscopic engines. Is this also true for nanomachines? A Dresden research team used laser tweezers to measure the friction between a single motor protein molecule and its track. The team found that also within our cells, motors work against the resistance of friction and are restrained in its operation—usually by far not as much though as their macroscopic counterparts. These first experimental measurements of protein friction could help researchers to better understand key cellular processes such as cell division which is driven by such molecular machines. (Science, August 14, 2009)

Friction is the force that resists the relative motion of two bodies in contact. The same is true on the nanoscale: Molecular motors have to fight the friction created between them and their tracks. However, since the frictional forces acting on such motors had not been measured before, it was not known how they depend on the speed and the direction of motion.

Friction Slows Down Proteins
Scientists in Dresden at the Biotechnology Center (BIOTEC) of the Technical University of Dresden and at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) immobilized the
molecular motor kinesin on a microsphere which was held by laser tweezers and dragged over its track, a so-called microtubule. In this manner, the friction force between the motor and its microtubule track was measured very precisely. "Just like for macroscopic machines, protein friction limits the speed and efficiency of the small bio-motors", says Erik Schäffer, group leader at the BIOTEC and Jonathon Howard, director and group leader at the MPI-CBG.

The researchers explain that the protein, in the absence of an energy source, takes eight nanometer (a millionth of a millimeter) wide "diffusive hops", corresponding to the length of the tubulin subunits that make up a microtubule. The motors step from one tubulin subunit to the adjacent one by forming a new bond with the microtubule filament as another bond is broken. When pulled by the tweezers, the energy released from these breaking bonds is lost as friction.

Efficient nanomachines
Protein friction also gives insight into the efficiency of kinesin. "About half of the energy from the motor's fuel ATP is dissipated as friction between the motor and its substrate" Howard comments. Schäffer adds: "What remains after further dissipation inside the motor is used for mechanical work—the efficiency is usually much better than for man-made machines". The dissipated energy is eventually converted to heat, that contributes to the heating of our body. Thus, for example our muscles are partly heated by protein friction as the muscle motor proteins do their work.

original publication:
Volker Bormuth, Vladimir Varga, Jonathon Howard, Erik Schäffer:
Protein friction limits diffusive and directed movements of
kinesin motors on microtubules
Science 325, 870 (August 14, 2009)
doi:10.1126/science.1174923

####

About Max Planck Institute of Molecular Cell Biology and Genetics
The Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), founded in 1998, is one of 80 institutes of the Max Planck Society, an independent, non-profit organization in Germany.

For more information, please click here

Contacts:
Dr. Erik Schäffer
Group Leader Nanomechanics
Biotechnology Center (BIOTEC)
TU Dresden
Tatzberg 47/49
01307 Dresden
Germany
phone +49 (351) 463-40360
fax +49 (351) 463-40342

Copyright © Max Planck Institute of Molecular Cell Biology and Genetics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Molecular Machines

NIST illuminates transfer of nanoscale motion through microscale machine September 14th, 2016

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Legions of nanorobots target cancerous tumors with precision: Administering anti-cancer drugs redefined August 16th, 2016

Molecular Nanotechnology

On-surface chemistry leads to novel products: On-surface chemical Reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. September 13th, 2016

Measuring forces in the DNA molecule: First direct measurements of base-pair bonding strength September 13th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Announcements

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic