Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Michigan Tech Team Models Molecular Transistor

Ravi Pandey at the blackboard
Ravi Pandey at the blackboard

Abstract:
Electronic gadgetry gets tinier and more powerful all the time, but at some point, the transistors and myriad other component parts will get so little they won't work. That's because when things get really small, the regular rules of Newtonian physics quit and the weird rules of quantum mechanics kick in. When that happens, as physics professor and chair Ravindra Pandey puts it, "everything goes haywire."

Michigan Tech Team Models Molecular Transistor

Houghton, MI | Posted on August 12th, 2009

Theorists in the field of molecular electronics hope to get around the problem by designing components out of a single molecule. Pandey's group has done just that—theoretically—by modeling a single-molecule field-effect transistor on a computer.

"Transistor" has been an oft-used but rarely understood household word since cheap Japanese radios flooded the US market back in the 1960s. Field-effect transistors form the basis of all integrated circuits, which in turn are the foundation of all modern electronics.

A simple switch either diverts current or shuts it off. Transistors can also amplify the current by applying voltage to it (that's how amplifiers work).

A diagram of Pandey's three-terminal single-molecule transistor looks like an elaborate necklace and pendant, made up of six-sided rings of carbon atoms bedecked with hydrogen and nitrogen atoms. His group demonstrated that the electrical current running from the source to the drain (through the necklace) rises dramatically when voltage applied at the gate (through the pendant) reaches a certain level.

This happens when electrons in the current suddenly move from one orbital path around their atoms to another. Or, as Pandey says, "Molecular orbital energies appear to contribute to the enhancement of the source-drain current."

Their virtual molecule may soon exist outside a computer. "Several experimental groups are working to make real our theoretical results," says Pandey.

An article on the molecular transistor, "Electronic Conduction in a Model Three-Terminal Molecular Transistor," was published in 2008 in the journal Nanotechnology, volume 19. Coauthors are physics graduate student Haying Hay and Sashi Karna of the Army Research Lab.

####

About Michigan Tech
Michigan Tech was founded in 1885 in response to the first mining boom in the U.S. — the clamor for Michigan's copper, which preceded the California Gold Rush by several years.

At its outset, the college trained mining and metallurgical engineers. Today, the University offers certificates, associate, bachelors, masters, and doctoral degrees in arts, humanities, and social sciences; business and economics; computing; engineering, forestry and environmental science, sciences; and technology.

For more information, please click here

Contacts:
Marcia Goodrich

906-487-2343,

Copyright © Michigan Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Chip Technology

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Nanoelectronics

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE