Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Michigan Tech Team Models Molecular Transistor

Ravi Pandey at the blackboard
Ravi Pandey at the blackboard

Abstract:
Electronic gadgetry gets tinier and more powerful all the time, but at some point, the transistors and myriad other component parts will get so little they won't work. That's because when things get really small, the regular rules of Newtonian physics quit and the weird rules of quantum mechanics kick in. When that happens, as physics professor and chair Ravindra Pandey puts it, "everything goes haywire."

Michigan Tech Team Models Molecular Transistor

Houghton, MI | Posted on August 12th, 2009

Theorists in the field of molecular electronics hope to get around the problem by designing components out of a single molecule. Pandey's group has done just that—theoretically—by modeling a single-molecule field-effect transistor on a computer.

"Transistor" has been an oft-used but rarely understood household word since cheap Japanese radios flooded the US market back in the 1960s. Field-effect transistors form the basis of all integrated circuits, which in turn are the foundation of all modern electronics.

A simple switch either diverts current or shuts it off. Transistors can also amplify the current by applying voltage to it (that's how amplifiers work).

A diagram of Pandey's three-terminal single-molecule transistor looks like an elaborate necklace and pendant, made up of six-sided rings of carbon atoms bedecked with hydrogen and nitrogen atoms. His group demonstrated that the electrical current running from the source to the drain (through the necklace) rises dramatically when voltage applied at the gate (through the pendant) reaches a certain level.

This happens when electrons in the current suddenly move from one orbital path around their atoms to another. Or, as Pandey says, "Molecular orbital energies appear to contribute to the enhancement of the source-drain current."

Their virtual molecule may soon exist outside a computer. "Several experimental groups are working to make real our theoretical results," says Pandey.

An article on the molecular transistor, "Electronic Conduction in a Model Three-Terminal Molecular Transistor," was published in 2008 in the journal Nanotechnology, volume 19. Coauthors are physics graduate student Haying Hay and Sashi Karna of the Army Research Lab.

####

About Michigan Tech
Michigan Tech was founded in 1885 in response to the first mining boom in the U.S. — the clamor for Michigan's copper, which preceded the California Gold Rush by several years.

At its outset, the college trained mining and metallurgical engineers. Today, the University offers certificates, associate, bachelors, masters, and doctoral degrees in arts, humanities, and social sciences; business and economics; computing; engineering, forestry and environmental science, sciences; and technology.

For more information, please click here

Contacts:
Marcia Goodrich

906-487-2343,

Copyright © Michigan Tech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Nanoelectronics

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic