Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Multi-Laboratory Study Sizes Up Nanoparticle Sizing

Abstract:
As a result of a major inter-laboratory study, the standards body ASTM International has been able to update its guidelines for a commonly used technique for measuring the size of nanoparticles in solutions.

Multi-Laboratory Study Sizes Up Nanoparticle Sizing

Gaithersburg, MD | Posted on August 12th, 2009

The study, which was organized principally by researchers from the National Institute of Standards and Technology (NIST) and the Nanotechnology Characterization Laboratory of the National Cancer Institute, enabled updated guidelines that now include statistically evaluated data on the measurement precisions achieved by a wide variety of laboratories applying the ASTM guide.

Data from the inter-laboratory comparison gathered from 26 different laboratories will provide a valuable benchmark for labs measuring the sizes and size distribution of nanoparticles suspended in fluids—one of the key measurements in nanotechnology research, especially for biological applications, according to materials researcher Vince Hackley, who led the NIST portion of the study.

Size is an important characteristic of nanoparticles in a variety of potential uses, but particularly in biotech applications where they are being studied for possible use in cancer therapies. The size of a nanoparticle can significantly affect how cells respond to it. (See, for example "Study: Cells Selectively Absorb Short Nanotubes," NIST Tech Beat, March 30, 2007.)

One widely used method for rapidly measuring the size profile of nanoparticles in, say, a buffer solution, is photon correlation spectroscopy (PCS), sometimes called "dynamic light scattering." The technique is powerful but tricky. The basic idea is to pass a laser beam through the solution and then to measure how rapidly the scattered light is fluctuating—faster moving particles cause the light scattering to change more rapidly than slower moving particles. If you know that, plus several basic parameters such as the viscosity and temperature of the fluid, says Hackley, and you can control a number of potential sources of error, then you can calculate meaningful size values for the particles.

ASTM standard E2490 is a guide for doing just that. The goal of the ASTM-sponsored study was to evaluate just how well a typical lab could expect to measure particle size following the guide. "The study really assesses, in a sense, how well people can apply these techniques given a fairly well-defined protocol and a well-defined material," explains Hackley. Having a "well-defined material" was a key factor, and one thing that made the experiment possible was the release this past year of NIST's first nanoparticle reference standards for the biomedical research community—NIST-certified solutions of gold nanoparticles of three different diameters, a project also supported by NCL. (See "NIST Reference Materials Are 'Gold Standard' for Bio-Nanotech Research, " NIST Tech Beat, Jan. 8, 2008.)

The inter-laboratory study required participating labs to measure particle size distribution in five samples—the three NIST reference materials and two solutions of dendrimers, a class of organic molecules that can be synthesized within a very narrow size range. The labs used not only PCS, but also electron and atomic force microscopy. The results were factored into precision and bias tables that are now a part of the ASTM standard.

For more on the study and ASTM standard E2490, see the ASTM International release "Extensive Interlaboratory Study Incorporated into Revision of ASTM Nanotechnology Standard."

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact
Michael Baum

(301) 975-2763

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Nanotubes/Buckyballs/Fullerenes

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nanomedicine

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Materials/Metamaterials

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Nanobiotechnology

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project