Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Multi-Laboratory Study Sizes Up Nanoparticle Sizing

Abstract:
As a result of a major inter-laboratory study, the standards body ASTM International has been able to update its guidelines for a commonly used technique for measuring the size of nanoparticles in solutions.

Multi-Laboratory Study Sizes Up Nanoparticle Sizing

Gaithersburg, MD | Posted on August 12th, 2009

The study, which was organized principally by researchers from the National Institute of Standards and Technology (NIST) and the Nanotechnology Characterization Laboratory of the National Cancer Institute, enabled updated guidelines that now include statistically evaluated data on the measurement precisions achieved by a wide variety of laboratories applying the ASTM guide.

Data from the inter-laboratory comparison gathered from 26 different laboratories will provide a valuable benchmark for labs measuring the sizes and size distribution of nanoparticles suspended in fluids—one of the key measurements in nanotechnology research, especially for biological applications, according to materials researcher Vince Hackley, who led the NIST portion of the study.

Size is an important characteristic of nanoparticles in a variety of potential uses, but particularly in biotech applications where they are being studied for possible use in cancer therapies. The size of a nanoparticle can significantly affect how cells respond to it. (See, for example "Study: Cells Selectively Absorb Short Nanotubes," NIST Tech Beat, March 30, 2007.)

One widely used method for rapidly measuring the size profile of nanoparticles in, say, a buffer solution, is photon correlation spectroscopy (PCS), sometimes called "dynamic light scattering." The technique is powerful but tricky. The basic idea is to pass a laser beam through the solution and then to measure how rapidly the scattered light is fluctuating—faster moving particles cause the light scattering to change more rapidly than slower moving particles. If you know that, plus several basic parameters such as the viscosity and temperature of the fluid, says Hackley, and you can control a number of potential sources of error, then you can calculate meaningful size values for the particles.

ASTM standard E2490 is a guide for doing just that. The goal of the ASTM-sponsored study was to evaluate just how well a typical lab could expect to measure particle size following the guide. "The study really assesses, in a sense, how well people can apply these techniques given a fairly well-defined protocol and a well-defined material," explains Hackley. Having a "well-defined material" was a key factor, and one thing that made the experiment possible was the release this past year of NIST's first nanoparticle reference standards for the biomedical research community—NIST-certified solutions of gold nanoparticles of three different diameters, a project also supported by NCL. (See "NIST Reference Materials Are 'Gold Standard' for Bio-Nanotech Research, " NIST Tech Beat, Jan. 8, 2008.)

The inter-laboratory study required participating labs to measure particle size distribution in five samples—the three NIST reference materials and two solutions of dendrimers, a class of organic molecules that can be synthesized within a very narrow size range. The labs used not only PCS, but also electron and atomic force microscopy. The results were factored into precision and bias tables that are now a part of the ASTM standard.

For more on the study and ASTM standard E2490, see the ASTM International release "Extensive Interlaboratory Study Incorporated into Revision of ASTM Nanotechnology Standard."

####

About NIST
From automated teller machines and atomic clocks to mammograms and semiconductors, innumerable products and services rely in some way on technology, measurement, and standards provided by the National Institute of Standards and Technology.

Founded in 1901, NIST is a non-regulatory federal agency within the U.S. Department of Commerce. NIST's mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Media Contact
Michael Baum

(301) 975-2763

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Nanotubes/Buckyballs/Fullerenes

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

$200K Awarded to Develop In Vitro Lung Test for Toxicity of Inhaled Nanomaterials: In Vitro Lung Test Designed to Protect Human Health and Replace Animal Testing September 1st, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Nanomedicine

Making nanowires from protein and DNA September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Materials/Metamaterials

Sustainable nanotechnology center September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Announcements

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Nanobiotechnology

Making nanowires from protein and DNA September 3rd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Using DNA origami to build nanodevices of the future September 1st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic