Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Capping a two-face particle gives Duke engineers complete control

Abstract:
Scientists drew fittingly from Roman mythology when they named a unique class of miniscule particles after the god Janus, who is usually depicted as having two faces looking in opposite directions.

For years, scientists have been fascinated by the tantalizing possibilities of these particles for their potential applications in electronic display devices, sensors and many other devices. However, realizing these applications requires precise control over the positions and orientation of the particles, something which has until now eluded scientists.

Capping a two-face particle gives Duke engineers complete control

Durham, NC | Posted on August 11th, 2009

Duke University engineers say they can for the first time control all the degrees of the particle's motion, opening up broad possibilities for nanotechnology and device applications. Their unique technology should make it more likely that Janus particles can be used as the building blocks for a myriad of applications, including such new technologies as electronic paper and self-propelling micromachines.

Typical Janus particles consist of miniscule spherical beads that have one hemisphere coated with a magnetic or metallic material. External magnetic or electric fields can then be used to control the orientation of the particles. However, this coating interferes with optical beams, or traps, another tool scientists use to control positioning.

The breakthrough of Duke engineers was to devise a fabrication strategy to coat the particle with a much smaller fraction of material. This discovery allows these particles to be compatible with optical traps and external magnetic fields, allowing for total control over the particles' positions and orientations.

"Past experiments have only been able to achieve four degrees of control using a combination of magnetic and optical techniques," said Nathan Jenness, a graduate student who completed his studies this year from Duke's Pratt School of Engineering. He and co-author Randall Erb, also a graduate student, were first authors of a paper appearing online in the journal Advanced Materials. "We have created a novel Janus particle that can be manipulated or constrained with six degrees of freedom."

The researchers have dubbed the unique particles they created "dot-Janus" particles.

Using optical traps on dot-Janus particles, researchers controlled three degrees of movement - up and down, left and right, forward and backward, while constraining one degree of rotation - side-to-side tilting. Using magnetic fields, they controlled the remaining two degrees of rotation - forward and backward tilting, and left and right turning.

"The solution was to create a particle with a small cap of cobalt that covers about a quarter of the particle," Erb said. He and Jenness conducted their research in the laboratory of Benjamin Yellen, Duke assistant professor of Mechanical Engineering and Materials Science. "This gave the particle just enough of a magnetic handle to allow it to be manipulated by magnetism without interfering with the optical tweezers."

The researchers said that the fabrication of these unique dot-Janus particles combined with the ability to control their orientation will have important ramifications in the burgeoning field of nanoengineering.

"Being able to more completely control these particles affords us a greater ability to measure the mechanical properties of biomolecules, including DNA," Yellen said. "It may also be possible to control the behavior of cells by manipulating dot-Janus particles attached to cell surfaces. These biological applications, as well as the ability to control the assembly of nanostructures, establish the broad scientific value of these findings."

The research was supported by the National Science Foundation and the Nanoscale Interdisciplinary Research Team. Robert Clark, former Duke dean of engineering and now in the same position at the University of Rochester, was also part of the research team.

####

For more information, please click here

Contacts:
Richard Merritt
(919) 660-8414


Nathan Jenness
(585) 275-3949


Randall Erb
(919) 660-5372


Benjamin Yellen
(919) 660-8261

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

Display technology/LEDs/SS Lighting/OLEDs

Spiraling light, nanoparticles and insights into life’s structure November 19th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Sensors

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Spiraling light, nanoparticles and insights into life’s structure November 19th, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Discoveries

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Novel Method Found for Connection of Metallic Alloys to Polymers November 23rd, 2014

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE