Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers make carbon nanotubes without metal catalyst

Abstract:
Oxides, as well as metals, seem to be able to sprout carbon nanotubes, study finds

Researchers make carbon nanotubes without metal catalyst

Cambridge, MA | Posted on August 10th, 2009

Kate Greene: Carbon nanotubes - tiny, rolled-up tubes of graphite - promise to add speed to electronic circuits and strength to materials like carbon composites, used in airplanes and racecars. A major problem, however, is that the metals used to grow nanotubes react unfavorably with materials found in circuits and composites. But now, researchers at MIT have for the first time shown that nanotubes can grow without a metal catalyst. The researchers demonstrate that zirconium oxide, the same compound found in cubic zirconia "fake diamonds," can also grow nanotubes, but without the unwanted side effects of metal.

The implications of ditching metals in the production of carbon nanotubes are great. Historically, nanotubes have been grown with elements such as iron, gold and cobalt. But these can be toxic and cause problems in clean room environments. Moreover, the use of metals in nanotube synthesis makes it difficult to view the formation process using infrared spectroscopy, a challenge that has kept researchers in the dark about some of the aspects of nanotube growth.

"I think this fundamentally changes the discussion about how we understand carbon nanotubes synthesis," says Brian Wardle, professor of aeronautics and astronautics who led the study, published Aug. 10 in the online version of the Journal of the American Chemical Society.

Wardle adds that some researchers might find the result controversial since no one has ever proven that anything other than a metal can grow a nanotube. "People report new metals [as catalysts] every so often," he says. "But now we have a whole new class of catalyst and new mechanism to understand and debate."

The conventional model for nanotube growth goes like this: A substrate is sprinkled with nanoparticle seeds made of a certain metal, of the same diameter of the desired nanotubes. The substrate and nanoparticles are heated to 600 to 900 degrees Celsius, and then a carbon-containing gas such as methane or alcohol is added. At the high temperatures, molecules break apart and reassemble. Some of these carbon-containing molecules find their way to the surface of a nanoparticle where they dissolve and then precipitate out, in nanotube form.

The researchers found that if they just used zirconium oxide nanoparticles on the substrate, they could coax carbon into nanotubes as well. Importantly, the mechanism for growth seems to be completely different from that of metal nanoparticle-grown tubes. Instead of dissolving into the nanoparticle and precipating out, zirconia-grown nanotubes appear to assemble directly on the surface.

In collaboration with Professor Stephan Hofmann at the University of Cambridge in England, the MIT researchers took images of the oxide-based nanotubes using X-ray photoelectron spectroscopy during growth. This allowed them to see that when nanotubes formed, zirconium oxide persisted, and didn't form into a metal, bolstering their conclusions.

One of the most exciting implications of the finding is that it means that carbon fiber and composites, used to make different types of crafts, could be strengthened by nanotubes. "Composites are durable, but fail under certain loading conditions, like when plywood flakes and splinters apart," says Stephen Steiner, an MIT graduate student and the study's first author. "But what if you could reinforce composites at the microlevel with nanotubes the way that rebar reinforces concrete in a building or a bridge? That's what we're trying to do to improve the mechanical properties and resistance to fracturing of carbon composites."

Steiner says the reason that planes like Airbus' A380 and Boeing's new 787 are made of only 40 percent composites and not 90 percent is because composites aren't strong enough for all parts of the craft. But if they were bolstered by nanotubes, then the planes could be made of more composites, which would make them lighter, and less expensive to fly because they wouldn't need as much fuel.

The findings are already impressing researchers in industry. "This innovation has far-reaching implications for commercial productions of carbon nanotubes," says David Lashmore, CTO of Nanocomp Technologies Inc., a company in Concord, N.H., that was not involved in the research. "It for the first time allows the use of a ceramic catalyst instead of a magnetic transition metal, some of which are carcinogenic."

Wardle suspects that more oxide-based catalysts will be found in the coming years. He and his team will focus on trying to understand the fundamental mechanisms of this type of nanotube growth and help to contribute more types of catalysts to the nanotube-growing arsenal. While the researchers don't have a timeline, they suspect that it would be easy to commercialize the process as it's simple, adaptable and, in many ways, more flexible than growth with metal catalysts.

This work was supported by Airbus S.A.S., Boeing, Embraer, Lockheed Martin, Saab AB, Spirit AeroSystems, Textron Inc., Composite Systems Technology, and TohoTenax through MIT's Nano-Engineered Composite aerospace Structures (NECST) Consortium.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Jen Hirsch
MIT News Office
Phone: 617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Possible Futures

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Chip Technology

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

Nanoelectronics

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Building nanomaterials for next-generation computing: Scientists recently developed a blueprint to fabricate new nanoheterostructures using 2D materials June 1st, 2018

Rare element to provide better material for high-speed electronics May 30th, 2018

Discoveries

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Automotive/Transportation

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

Aerospace/Space

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

SpaceX Founding Employee Tom Mueller to Speak at International Space Development Conference May 15th, 2018

Shrimp, Soybeans, and Tomatoes Top the Menu in Cities in Space May 10th, 2018

National Space Society Applauds NASA's Support for Commercial Low Earth Orbit Space Stations May 2nd, 2018

Industrial

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Leti and Inac Show Path to Creating Building Blocks of Quantum Processors With 28Si isotope in a CMOS Line: Fabrication of Isotopically Enriched, Industry-Compatible Wafers Points Way To Realizing Silicon Spin Quantum Bits with Enhanced Fidelity March 20th, 2018

Glass matters: UCSB researchers find that the chemical topology of silica can influence the effectiveness of many chemical processes that use it March 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project