Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers make carbon nanotubes without metal catalyst

Abstract:
Oxides, as well as metals, seem to be able to sprout carbon nanotubes, study finds

Researchers make carbon nanotubes without metal catalyst

Cambridge, MA | Posted on August 10th, 2009

Kate Greene: Carbon nanotubes - tiny, rolled-up tubes of graphite - promise to add speed to electronic circuits and strength to materials like carbon composites, used in airplanes and racecars. A major problem, however, is that the metals used to grow nanotubes react unfavorably with materials found in circuits and composites. But now, researchers at MIT have for the first time shown that nanotubes can grow without a metal catalyst. The researchers demonstrate that zirconium oxide, the same compound found in cubic zirconia "fake diamonds," can also grow nanotubes, but without the unwanted side effects of metal.

The implications of ditching metals in the production of carbon nanotubes are great. Historically, nanotubes have been grown with elements such as iron, gold and cobalt. But these can be toxic and cause problems in clean room environments. Moreover, the use of metals in nanotube synthesis makes it difficult to view the formation process using infrared spectroscopy, a challenge that has kept researchers in the dark about some of the aspects of nanotube growth.

"I think this fundamentally changes the discussion about how we understand carbon nanotubes synthesis," says Brian Wardle, professor of aeronautics and astronautics who led the study, published Aug. 10 in the online version of the Journal of the American Chemical Society.

Wardle adds that some researchers might find the result controversial since no one has ever proven that anything other than a metal can grow a nanotube. "People report new metals [as catalysts] every so often," he says. "But now we have a whole new class of catalyst and new mechanism to understand and debate."

The conventional model for nanotube growth goes like this: A substrate is sprinkled with nanoparticle seeds made of a certain metal, of the same diameter of the desired nanotubes. The substrate and nanoparticles are heated to 600 to 900 degrees Celsius, and then a carbon-containing gas such as methane or alcohol is added. At the high temperatures, molecules break apart and reassemble. Some of these carbon-containing molecules find their way to the surface of a nanoparticle where they dissolve and then precipitate out, in nanotube form.

The researchers found that if they just used zirconium oxide nanoparticles on the substrate, they could coax carbon into nanotubes as well. Importantly, the mechanism for growth seems to be completely different from that of metal nanoparticle-grown tubes. Instead of dissolving into the nanoparticle and precipating out, zirconia-grown nanotubes appear to assemble directly on the surface.

In collaboration with Professor Stephan Hofmann at the University of Cambridge in England, the MIT researchers took images of the oxide-based nanotubes using X-ray photoelectron spectroscopy during growth. This allowed them to see that when nanotubes formed, zirconium oxide persisted, and didn't form into a metal, bolstering their conclusions.

One of the most exciting implications of the finding is that it means that carbon fiber and composites, used to make different types of crafts, could be strengthened by nanotubes. "Composites are durable, but fail under certain loading conditions, like when plywood flakes and splinters apart," says Stephen Steiner, an MIT graduate student and the study's first author. "But what if you could reinforce composites at the microlevel with nanotubes the way that rebar reinforces concrete in a building or a bridge? That's what we're trying to do to improve the mechanical properties and resistance to fracturing of carbon composites."

Steiner says the reason that planes like Airbus' A380 and Boeing's new 787 are made of only 40 percent composites and not 90 percent is because composites aren't strong enough for all parts of the craft. But if they were bolstered by nanotubes, then the planes could be made of more composites, which would make them lighter, and less expensive to fly because they wouldn't need as much fuel.

The findings are already impressing researchers in industry. "This innovation has far-reaching implications for commercial productions of carbon nanotubes," says David Lashmore, CTO of Nanocomp Technologies Inc., a company in Concord, N.H., that was not involved in the research. "It for the first time allows the use of a ceramic catalyst instead of a magnetic transition metal, some of which are carcinogenic."

Wardle suspects that more oxide-based catalysts will be found in the coming years. He and his team will focus on trying to understand the fundamental mechanisms of this type of nanotube growth and help to contribute more types of catalysts to the nanotube-growing arsenal. While the researchers don't have a timeline, they suspect that it would be easy to commercialize the process as it's simple, adaptable and, in many ways, more flexible than growth with metal catalysts.

This work was supported by Airbus S.A.S., Boeing, Embraer, Lockheed Martin, Saab AB, Spirit AeroSystems, Textron Inc., Composite Systems Technology, and TohoTenax through MIT's Nano-Engineered Composite aerospace Structures (NECST) Consortium.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Jen Hirsch
MIT News Office
Phone: 617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Possible Futures

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Discoveries

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Automotive/Transportation

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Aerospace/Space

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

We’ll Leave the Lights On For You: Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin - See more at: http://www.news.ucsb.edu/2016/016805/we-ll-leave-li May 17th, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

Industrial

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Solliance realizes first up-scaled Perovskite based PV modules with 10% efficiency: Holst Centre, imec and ECN pave the road to upscaling Perovskite PV modules May 10th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Visualizing the Lithiation of a Nanosized Iron-Oxide Material in Real Time: Electron microscopy technique reveals the reaction pathways that emerge as lithium ions are added to magnetite nanoparticles May 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic