Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers make carbon nanotubes without metal catalyst

Abstract:
Oxides, as well as metals, seem to be able to sprout carbon nanotubes, study finds

Researchers make carbon nanotubes without metal catalyst

Cambridge, MA | Posted on August 10th, 2009

Kate Greene: Carbon nanotubes - tiny, rolled-up tubes of graphite - promise to add speed to electronic circuits and strength to materials like carbon composites, used in airplanes and racecars. A major problem, however, is that the metals used to grow nanotubes react unfavorably with materials found in circuits and composites. But now, researchers at MIT have for the first time shown that nanotubes can grow without a metal catalyst. The researchers demonstrate that zirconium oxide, the same compound found in cubic zirconia "fake diamonds," can also grow nanotubes, but without the unwanted side effects of metal.

The implications of ditching metals in the production of carbon nanotubes are great. Historically, nanotubes have been grown with elements such as iron, gold and cobalt. But these can be toxic and cause problems in clean room environments. Moreover, the use of metals in nanotube synthesis makes it difficult to view the formation process using infrared spectroscopy, a challenge that has kept researchers in the dark about some of the aspects of nanotube growth.

"I think this fundamentally changes the discussion about how we understand carbon nanotubes synthesis," says Brian Wardle, professor of aeronautics and astronautics who led the study, published Aug. 10 in the online version of the Journal of the American Chemical Society.

Wardle adds that some researchers might find the result controversial since no one has ever proven that anything other than a metal can grow a nanotube. "People report new metals [as catalysts] every so often," he says. "But now we have a whole new class of catalyst and new mechanism to understand and debate."

The conventional model for nanotube growth goes like this: A substrate is sprinkled with nanoparticle seeds made of a certain metal, of the same diameter of the desired nanotubes. The substrate and nanoparticles are heated to 600 to 900 degrees Celsius, and then a carbon-containing gas such as methane or alcohol is added. At the high temperatures, molecules break apart and reassemble. Some of these carbon-containing molecules find their way to the surface of a nanoparticle where they dissolve and then precipitate out, in nanotube form.

The researchers found that if they just used zirconium oxide nanoparticles on the substrate, they could coax carbon into nanotubes as well. Importantly, the mechanism for growth seems to be completely different from that of metal nanoparticle-grown tubes. Instead of dissolving into the nanoparticle and precipating out, zirconia-grown nanotubes appear to assemble directly on the surface.

In collaboration with Professor Stephan Hofmann at the University of Cambridge in England, the MIT researchers took images of the oxide-based nanotubes using X-ray photoelectron spectroscopy during growth. This allowed them to see that when nanotubes formed, zirconium oxide persisted, and didn't form into a metal, bolstering their conclusions.

One of the most exciting implications of the finding is that it means that carbon fiber and composites, used to make different types of crafts, could be strengthened by nanotubes. "Composites are durable, but fail under certain loading conditions, like when plywood flakes and splinters apart," says Stephen Steiner, an MIT graduate student and the study's first author. "But what if you could reinforce composites at the microlevel with nanotubes the way that rebar reinforces concrete in a building or a bridge? That's what we're trying to do to improve the mechanical properties and resistance to fracturing of carbon composites."

Steiner says the reason that planes like Airbus' A380 and Boeing's new 787 are made of only 40 percent composites and not 90 percent is because composites aren't strong enough for all parts of the craft. But if they were bolstered by nanotubes, then the planes could be made of more composites, which would make them lighter, and less expensive to fly because they wouldn't need as much fuel.

The findings are already impressing researchers in industry. "This innovation has far-reaching implications for commercial productions of carbon nanotubes," says David Lashmore, CTO of Nanocomp Technologies Inc., a company in Concord, N.H., that was not involved in the research. "It for the first time allows the use of a ceramic catalyst instead of a magnetic transition metal, some of which are carcinogenic."

Wardle suspects that more oxide-based catalysts will be found in the coming years. He and his team will focus on trying to understand the fundamental mechanisms of this type of nanotube growth and help to contribute more types of catalysts to the nanotube-growing arsenal. While the researchers don't have a timeline, they suspect that it would be easy to commercialize the process as it's simple, adaptable and, in many ways, more flexible than growth with metal catalysts.

This work was supported by Airbus S.A.S., Boeing, Embraer, Lockheed Martin, Saab AB, Spirit AeroSystems, Textron Inc., Composite Systems Technology, and TohoTenax through MIT's Nano-Engineered Composite aerospace Structures (NECST) Consortium.

####

About MIT
The mission of MIT is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the 21st century.

For more information, please click here

Contacts:
Jen Hirsch
MIT News Office
Phone: 617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Possible Futures

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Nanotubes/Buckyballs/Fullerenes

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Automotive/Transportation

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Researchers boost wireless power transfer with magnetic field enhancement July 23rd, 2015

Aerospace/Space

The National Space Society Pays Tribute to Dr. Kalam -- One Of Our Leading Lights Has Joined The Stars August 1st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Global Aerospace Applications Nanocoatings Industry 2015: Acute Market Reports July 21st, 2015

Industrial

Industrial Nanotech, Inc. Provides Update on PCAOB Audited Financials July 27th, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

More efficient process to produce graphene developed by Ben-Gurion University researchers July 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project