Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoscale origami from DNA - Researchers develop a new toolbox for nano-engineering

DNA molecules as ideal building blocks for nano structures. Image: H. Dietz, TUM Dept. of Physics
DNA molecules as ideal building blocks for nano structures. Image: H. Dietz, TUM Dept. of Physics

Abstract:
Scientists at the Technische Universitaet Muenchen (TUM) and Harvard University have thrown the lid off a new toolbox for building nanoscale structures out of DNA, with complex twisting and curving shapes. In the August 7 issue of the journal Science, they report a series of experiments in which they folded DNA, origami-like, into three-dimensional objects including a beach ball-shaped wireframe capsule just 50 nanometers in diameter.

Nanoscale origami from DNA - Researchers develop a new toolbox for nano-engineering

Germany & Massachusetts | Posted on August 6th, 2009

"Our goal was to find out whether we could program DNA to assemble into shapes that exhibit custom curvature or twist, with features just a few nanometers wide," says biophysicist Hendrik Dietz, a professor at the Technische Universitaet Muenchen. Dietz's collaborators in these experiments were Professor William Shih and Dr. Shawn Douglas of Harvard University. "It worked," he says, "and we can now build a diversity of three-dimensional nanoscale machine parts, such as round gears or curved tubes or capsules. Assembling those parts into bigger, more complex and functional devices should be possible."

As a medium for nanoscale engineering, DNA has the dual advantages of being a smart material - not only tough and flexible but also programmable - and being very well characterized by decades of study. Basic tools that Dietz, Douglas, and Shih employ are programmable self-assembly - directing DNA strands to form custom-shaped bundles of cross-linked double helices - and targeted insertions or deletions of base pairs that can give such bundles a desired twist or curve. Right-handed or left-handed twisting can be specified. They report achieving precise, quantitative control of these shapes, with a radius of curvature as tight as 6 nanometers.

The toolbox they have developed includes a graphical software program that helps to translate specific design concepts into the DNA programming required to realize them. Three-dimensional shapes are produced by "tuning" the number, arrangement, and lengths of helices.

In their current paper, the researchers present a wide variety of nanoscale structures and describe in detail how they designed, formed, and verified them. "Many advanced macroscopic machines require curiously shaped parts in order to function," Dietz says, "and we have the tools to make them. But we currently cannot build something intricate such as an ant's leg or, much smaller, a ten-nanometer-small chemical plant such as a protein enzyme. We expect many benefits if only we could build super-miniaturized devices on the nanoscale using materials that work robustly in the cells of our bodies - biomolecules such as DNA."

Original paper:

Folding DNA into Twisted and Curved Nanoscale Shapes
Hendrik Dietz, Shawn M. Douglas, and William M. Shih,
Science 7 August 2009: Vol. 325. no. 5941, pp. 725 - 730 - DOI: 10.1126/science.1174251

####

About Technische Universitaet Muenchen
Technische Universität München (TUM; sometimes translated as Technical University Munich)[2] is a research university with campuses in Munich, Garching, and Weihenstephan.

TUM is among the highest acclaimed universities in Germany, producing several Nobel Laureates including Gerhard Ertl who in 2007 received the Nobel Prize in Chemistry.

From Wikipedia, the free encyclopedia

For more information, please click here

Contacts:
Prof. Hendrik Dietz
Department of Physics
Technische Universitaet Muenchen
James-Franck-Str. 1, 85748 Garching, Germany
Tel. +49 89 289 12539
Fax: +49 89 289 12523

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Performance Drop in Solar Cells Prevented by Nanotechnology February 1st, 2015

Pinholes are Pitfalls for High Performance Solar Cells February 1st, 2015

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Molecular Machines

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Announcements

Performance Drop in Solar Cells Prevented by Nanotechnology February 1st, 2015

Pinholes are Pitfalls for High Performance Solar Cells February 1st, 2015

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Nanobiotechnology

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE