Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Protein folding: Diverse methods yield clues - Comparison finds approaches of protein study are complementary

Abstract:
Rice University physicists have written the next chapter in an innovative approach for studying the forces that shape proteins. Featured on the cover of today's issue of the Journal of Physical Chemistry, the new research illustrates the value of studying proteins with a new method that uses the tools of nanotechnology.

Protein folding: Diverse methods yield clues - Comparison finds approaches of protein study are complementary

Houston, TX | Posted on August 6th, 2009

Rice University physicists have written the next chapter in an innovative approach for studying the forces that shape proteins -- the biochemical workhorses of all living things.

New research featured on the cover of today's issue of the Journal of Physical Chemistry illustrates the value of studying proteins with a new method that uses the tools of nanotechnology to grab a single molecule and pull it apart. The new method helps scientists measure the forces that hold proteins together. The new study contrasted the findings from Rice's method with a different approach that relies on chemical reactions.

"There is an ongoing discussion among scientists about which of these methods is more relevant," said Ching-Hwa Kiang, assistant professor of physics and astronomy at Rice. "What we've found is that each teaches us something different, but the results from the two are similar enough that we can use them together in the future."

Over the past decades, scientists have discovered that misfolded proteins play an important but mysterious role in diseases like Alzheimer's and Parkinson's. As a result, more laboratories like Kiang's are studying how proteins fold and misfold in the hopes of finding clues that could lead to new treatments.

Kiang's team specializes in studying the forces that hold protein strands together. Her group uses atomic force microscopes (AFM), which operate much like phonograph players. The AFM has a needle that's suspended from one end of a cantilevered arm. The needle bobs up and down on the arm, randomly grabbing and lifting proteins. By measuring exactly how much force it takes to pull the strands apart, Kiang's group can learn important clues about the protein's behavior.

Kiang's work was recognized in Small Times magazine's 2007 "Best of Small Tech Awards," but it's not the only way to study protein folding. Other groups use chemicals to determine how much energy it takes to unfold proteins, and Kiang's latest paper looks at similarities and differences between the two methods.

"The chemical denaturant method gives very accurate information about the folded and unfolded state of the protein, and our method gives important information about what happens in between," Kiang said.

Proteins are the workhorses of biology. Each protein is a string of amino acids that are attached end to end, like a strand of pearls. The order of the amino acids comes from DNA blueprints, but the order itself doesn't tell scientists what the protein is designed to do. That's because each protein folds in upon itself shortly after its made, much like a strand of pearls curls up as it's dropped into someone's palm.

Unlike the pearls, which might fall this way or that depending upon how they're dropped, proteins fold the same way every time. That's important, because when they misfold, they cannot function properly and in some cases can make people sick.

"This is fundamental research, but it is very important," Kiang said. "We need to answer to these fundamental questions in order to better understand how protein folds correctly, which affects people's health."

The research was sponsored by the National Science Foundation, the National Institutes of Health and the Welch Foundation.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,102 undergraduates and 2,237 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
Associate Director and Science Editor
Office of Public Affairs/News & Media Relations
Rice University
(office) 713-348-6778
(cell) 713-302-2447


www.rice.edu

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Chemistry

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Quick Method Found for Synthesis of Organic Compounds with Less Pollution September 25th, 2014

Discoveries

Research mimics brain cells to boost memory power September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Announcements

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Nanobiotechnology

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

New NIH/DOE Grant for Life Science Studies at NSLS-II: Funding will support operation of three powerful experimental stations designed to reveal detailed structures of proteins, viruses, and more September 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE