Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles cross blood-brain barrier to enable 'brain tumor painting'

A mouse brain tumor imaged using nanoparticles (left column) or conventional techniques (right column) combined with optical imaging and MRI. The nanoparticles give a clearer picture of the tumor, which is located at the back of the brian in the cerebellum.  Image courtesy University of Washington.
A mouse brain tumor imaged using nanoparticles (left column) or conventional techniques (right column) combined with optical imaging and MRI. The nanoparticles give a clearer picture of the tumor, which is located at the back of the brian in the cerebellum. Image courtesy University of Washington.

Abstract:
Brain cancer is among the deadliest of cancers. It's also one of the hardest to treat. Imaging results are often imprecise because brain cancers are extremely invasive. Surgeons must saw through the skull and safely remove as much of the tumor as they can. Then doctors use radiation or chemotherapy to destroy cancerous cells in the surrounding tissue.

Nanoparticles cross blood-brain barrier to enable 'brain tumor painting'

Seattle, WA | Posted on August 4th, 2009

Researchers at the University of Washington have been able to illuminate brain tumors by injecting fluorescent nanoparticles into the bloodstream that safely cross the blood-brain barrier -- an almost impenetrable barrier that protects the brain from infection. The nanoparticles remained in mouse tumors for up to five days and did not show any evidence of damaging the blood-brain barrier, according to results published this week in the journal Cancer Research.

Results showed the nanoparticles improved the contrast in both MRI and optical imaging, which is used during surgery.

"Brain cancers are very invasive, different from the other cancers. They will invade the surrounding tissue and there is no clear boundary between the tumor tissue and the normal brain tissue," said lead author Miqin Zhang, a UW professor of materials science and engineering.

Being unable to distinguish a boundary complicates the surgery. Severe cognitive problems are a common side effect.

"If we can inject these nanoparticles with infrared dye, they will increase the contrast between the tumor tissue and the normal tissue," Zhang said. "So during the surgery, the surgeons can see the boundary more precisely.

"We call it 'brain tumor illumination or brain tumor painting,'" she said. "The tumor will light up."

Nano-imaging could also help with early cancer detection, Zhang said. Current imaging techniques have a maximum resolution of 1 millimeter (1/25 of an inch). Nanoparticles could improve the resolution by a factor of 10 or more, allowing detection of smaller tumors and earlier treatment.

Until now, no nanoparticle used for imaging has been able to cross the blood-brain barrier and specifically bind to brain-tumor cells. With current techniques doctors inject dyes into the body and use drugs to temporarily open the blood-brain barrier, risking infection of the brain.

The UW team surmounted this challenge by building a nanoparticle that remains small in wet conditions. The particle was about 33 nanometers in diameter when wet, about a third the size of similar particles used in other parts of the body.

Crossing the blood-brain barrier depends on the size of the particle, its lipid, or fat, content, and the electric charge on the particle. Zhang and colleagues built a particle that can pass through the barrier and reach tumors. To specifically target tumor cells they used chlorotoxin, a small peptide isolated from scorpion venom that many groups, including Zhang's, are exploring for its tumor-targeting abilities. On the nanoparticle's surface Zhang placed a small fluorescent molecule for optical imaging, and binding sites that could be used for attaching other molecules.

Future research will evaluate this nanoparticle's potential for treating tumors, Zhang said. She and colleagues already showed that chlorotoxin combined with nanoparticles dramatically slows tumors' spread. They will see whether that ability could extend to brain cancer, the most common solid tumor to affect children.

Merely improving imaging, however, would improve patient outcomes.

"Precise imaging of brain tumors is phenomenally important. We know that patient survival for brain tumors is directly related to the amount of tumor that you can resect," said co-author Richard Ellenbogen, professor and chair of neurological surgery at the UW School of Medicine. "This is the next generation of cancer imaging," he said. "The last generation was CT, this generation was MRI, and this is the next generation of advances."

Other co-authors are Omid Veiseh, Conroy Sun, Chen Fang, Narayan Bhattarai, Jonathan Gunn of the UW's department of materials science and engineering; Forrest Kievit and Kim Du of UW bioengineering; Donghoon Lee of UW radiology; Barbara Pullar of the Fred Hutchinson Cancer Research Center; and Jim Olson of the Fred Hutchinson Cancer Research Center and Seattle Children's Hospital.

The research was funded by the National Institutes of Health, the Jordyn Dukelow Memorial Fund and the Seattle Children's Hospital Brain Tumor Research Endowment.

####

About University of Washington
Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world. Read more about the UW's history >

The UW educates a diverse student body to become responsible global citizens and future leaders through a challenging learning environment informed by cutting-edge scholarship.

We discover timely solutions to the world’s most complex problems and enrich people’s lives throughout our community, the state of Washington, the nation and the world.

For more information, please click here

Contacts:
Miqin Zhang
206-616-9356

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Possible Futures

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Nanobiotechnology

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Nanobiotix's promising data from Phase I/II head and neck cancer trial presented at ASCO June 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project