Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New electrode for improved lithium-ion battery performance

Dr. Ming Au developed nanostructured anodes
Dr. Ming Au developed nanostructured anodes

Abstract:
A new kind of anode developed at DOE's Savannah River National Laboratory is expected to increase the energy density of lithium-ion batteries four-fold—or enough to enable the battery to power an electric car for 300 miles on a single charge.

New electrode for improved lithium-ion battery performance

Aiken, SC | Posted on August 4th, 2009

The energy storage capacity of today's lithium-ion batteries is limited by the widely used graphite anode, in which lithium (Li) ions are sandwiched into the carbon layer structure, with every six carbon atoms accommodating one Li atom. This structure gives the graphite anode a theoretical capacity of 372mAh/g. Reaching the 300-mile goal will require increasing the energy density 3-4 times that of the traditional anode.

SRNL's Dr. Ming Au developed nanostructured anodes that not only reach the desired increase in energy density, but use a production method that eliminates safety and environmental concerns presented by standard fabrication of carbon based anodes. The next challenge will be to sustain that energy density through multiple charge-discharge cycles.

His solution uses nanorods of various metals and metal oxides directly formed with the current collectors. Although tiny, these nanorods have the advantage of large surface areas for lithium ions to access, which means they can bind a higher number of lithium cations than the conventional graphite design.

Studies of these formations have shown that numerous inexpensive metals and metal oxides can be considered for nanorod formations to elevate charge capacities of the anodes in lithium-ion batteries. Further studies are ongoing to explore other nanostructure such as nanoporous hollow spheres of metals and metal oxides, understand the mechanism of lithium reaction in anode and sustain the high energy density through multiple charge-discharge cycles.

####

About Savannah River National Laboratory
SRNL is collaborating in several new projects to advance the nation’s energy security under two programs recently announced by the U.S. Department of Energy, the Energy Frontier Research Centers and the Nuclear Energy University Program.

For more information, please click here

Contacts:
Media Relations
Angeline (Angie) French
(803) 725-2854

Savannah River National Laboratory
Savannah River Site
Aiken, SC 29808

Copyright © Savannah River National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Possible Futures

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Announcements

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Environment

Can crab shells provide a 'green' solution to malaria? Study shows how a mixture of chitin and silver nanoparticles inhibits growth of mosquito larvae May 12th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Automotive/Transportation

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Is this the 'holey' grail of batteries? May 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project