Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Self-healing surfaces

The nano-capsules in the electroplated layer contain a fluid.  If the layer is scratched, the layer bursts, the fluid escapes and repairs the scratch. (copyright Fraunhofer IPA)
The nano-capsules in the electroplated layer contain a fluid. If the layer is scratched, the layer bursts, the fluid escapes and repairs the scratch. (copyright Fraunhofer IPA)

Abstract:
The engineers‘ dream of self-healing surfaces has taken another step towards becoming reality - researchers have produced a electroplated layer that contains tiny nanometer-sized capsules. If the layer is damaged, the capsules release fluid and repair the scratch.

Self-healing surfaces

Munich, Germany | Posted on August 3rd, 2009

Human skin is a phenomenon - small scratches and cuts heal quickly, leaving no trace of a scar after just a few days. It's a different matter with materials, such as metals - if the electroplated layer protecting the metals from corrosion is scratched, rust protection is lost.

Engineers are working on transferring the self-healing effect of skin to materials. The idea behind this is to introduce evenly distributed fluid-filled capsules into the electroplated layer - rather like raisins in a cake. If the layer is damaged, the pellets at the point of damage burst, the fluid runs out and ‘repairs' the scratch. Until now, these plans have failed due to the size of the capsules - at 10 to 15 micrometers they were too large for the electroplated layer, which is around 20 micrometers thick. The capsules altered the mechanical properties of the layer.

Researchers from the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, together with colleagues from Duisburg-Essen University, have developed a process for producing electroplated layers with nano-capsules, in a project being financed by the Volkswagen Foundation. At only a few hundred nanometers in diameter, the capsules are measured on another scale entirely, compared with previous results. "The challenge lies in not damaging the capsules when producing the electroplated layer", says Dr. Martin Metzner, Head of Department at IPA. "The smaller the capsules, the thinner and more sensitive their casing. The electrolytes used for these electroplated-technical processes are extremely aggressive chemically and can easily destroy the capsules". The researchers therefore had to find a compatible material for the capsule casing depending on the electrolytes used.

Mechanical bearings are one example of possible applications - the materials of the bearings usually have a electroplated coating, in which the capsules can be embedded. If there is a temporary shortage of lubricant, part of the bearing's coating is lost, the capsules at the top of the layer burst and release lubricant. The bearing is not therefore damaged if it temporarily runs dry. The researchers have produced the first copper, nickel and zinc coatings with the new capsules, although surface coverage does not extend beyond the centimeter scale. Experts estimate that it will be another one and a half to two years before whole components can be coated. In a further step the team worked on more complex systems - involving differently filled capsules, for example, whose fluids react with one another like a two component adhesive.

####

About Fraunhofer Society
The Fraunhofer-Gesellschaft promotes and undertakes applied research in an international context, of direct utility to private and public enterprise and of wide benefit to society as a whole.

By developing technological innovations and novel systems solutions for their customers, the Fraunhofer Institutes help to reinforce the competitive strength of the economy in their region, throughout Germany and in Europe. Their research activities are aimed at promoting the economic development of our industrial society, with particular regard for social welfare and environmental compatibility.

As an employer, the Fraunhofer-Gesellschaft offers a platform that enables its staff to develop the necessary professional and personal skills that will enable them to assume positions of responsibility within their institute, in industry and in other scientific domains.

For more information, please click here

Contacts:
Dr.-Ing. Martin Metzner
Fraunhofer-Institut für Produktionstechnik und Automatisierung

Copyright © Fraunhofer-Institut für Produktionstechnik und Automatisieru

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Announcements

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Automotive/Transportation

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE