Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Self-healing surfaces

The nano-capsules in the electroplated layer contain a fluid.  If the layer is scratched, the layer bursts, the fluid escapes and repairs the scratch. (copyright Fraunhofer IPA)
The nano-capsules in the electroplated layer contain a fluid. If the layer is scratched, the layer bursts, the fluid escapes and repairs the scratch. (copyright Fraunhofer IPA)

Abstract:
The engineers‘ dream of self-healing surfaces has taken another step towards becoming reality - researchers have produced a electroplated layer that contains tiny nanometer-sized capsules. If the layer is damaged, the capsules release fluid and repair the scratch.

Self-healing surfaces

Munich, Germany | Posted on August 3rd, 2009

Human skin is a phenomenon - small scratches and cuts heal quickly, leaving no trace of a scar after just a few days. It's a different matter with materials, such as metals - if the electroplated layer protecting the metals from corrosion is scratched, rust protection is lost.

Engineers are working on transferring the self-healing effect of skin to materials. The idea behind this is to introduce evenly distributed fluid-filled capsules into the electroplated layer - rather like raisins in a cake. If the layer is damaged, the pellets at the point of damage burst, the fluid runs out and ‘repairs' the scratch. Until now, these plans have failed due to the size of the capsules - at 10 to 15 micrometers they were too large for the electroplated layer, which is around 20 micrometers thick. The capsules altered the mechanical properties of the layer.

Researchers from the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, together with colleagues from Duisburg-Essen University, have developed a process for producing electroplated layers with nano-capsules, in a project being financed by the Volkswagen Foundation. At only a few hundred nanometers in diameter, the capsules are measured on another scale entirely, compared with previous results. "The challenge lies in not damaging the capsules when producing the electroplated layer", says Dr. Martin Metzner, Head of Department at IPA. "The smaller the capsules, the thinner and more sensitive their casing. The electrolytes used for these electroplated-technical processes are extremely aggressive chemically and can easily destroy the capsules". The researchers therefore had to find a compatible material for the capsule casing depending on the electrolytes used.

Mechanical bearings are one example of possible applications - the materials of the bearings usually have a electroplated coating, in which the capsules can be embedded. If there is a temporary shortage of lubricant, part of the bearing's coating is lost, the capsules at the top of the layer burst and release lubricant. The bearing is not therefore damaged if it temporarily runs dry. The researchers have produced the first copper, nickel and zinc coatings with the new capsules, although surface coverage does not extend beyond the centimeter scale. Experts estimate that it will be another one and a half to two years before whole components can be coated. In a further step the team worked on more complex systems - involving differently filled capsules, for example, whose fluids react with one another like a two component adhesive.

####

About Fraunhofer Society
The Fraunhofer-Gesellschaft promotes and undertakes applied research in an international context, of direct utility to private and public enterprise and of wide benefit to society as a whole.

By developing technological innovations and novel systems solutions for their customers, the Fraunhofer Institutes help to reinforce the competitive strength of the economy in their region, throughout Germany and in Europe. Their research activities are aimed at promoting the economic development of our industrial society, with particular regard for social welfare and environmental compatibility.

As an employer, the Fraunhofer-Gesellschaft offers a platform that enables its staff to develop the necessary professional and personal skills that will enable them to assume positions of responsibility within their institute, in industry and in other scientific domains.

For more information, please click here

Contacts:
Dr.-Ing. Martin Metzner
Fraunhofer-Institut für Produktionstechnik und Automatisierung

Copyright © Fraunhofer-Institut für Produktionstechnik und Automatisieru

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Possible Futures

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Automotive/Transportation

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project