Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > DNA Computation Gets Logical at the Weizmann Institute of Science

Abstract:
Biomolecular computers, made of DNA and other biological molecules, only exist today in a few specialized labs, remote from the regular computer user. Nonetheless, Tom Ran and Shai Kaplan, research students in the lab of Prof. Ehud Shapiro of the Weizmann Institute's Biological Chemistry, and Computer Science and Applied Mathematics Departments have found a way to make these microscopic computing devices ‘user friendly,' even while performing complex computations and answering complicated queries.

DNA Computation Gets Logical at the Weizmann Institute of Science

Rehovot, Israel | Posted on August 3rd, 2009

Shapiro and his team at Weizmann introduced the first autonomous programmable DNA computing device in 2001. So small that a trillion fit in a drop of water, that device was able to perform such simple calculations as checking a list of 0s and 1s to determine if there was an even number of 1s. A newer version of the device, created in 2004, detected cancer in a test tube and released a molecule to destroy it. Besides the tantalizing possibility that such biology-based devices could one day be injected into the body - a sort of ‘doctor in a cell' locating disease and preventing its spread - biomolecular computers could conceivably perform millions of calculations in parallel.

Now, Shapiro and his team, in a paper published online today in Nature Nanotechnology, have devised an advanced program for biomolecular computers that enables them to ‘think' logically. The train of deduction used by this futuristic device is remarkably familiar. It was first proposed by Aristotle over 2000 years ago as a simple if…then proposition: ‘All men are mortal. Socrates is a man. Therefore, Socrates is mortal.' When fed a rule (All men are mortal) and a fact (Socrates is a man), the computer answered the question ‘Is Socrates Mortal?' correctly. The team went on to set up more complicated queries involving multiple rules and facts, and the DNA computing devices were able to deduce the correct answers every time.

At the same time, the team created a compiler - a program for bridging between a high-level computer programming language and DNA computing code. Upon compiling, the query could be typed in something like this: Mortal(Socrates)?. To compute the answer, various strands of DNA representing the rules, facts and queries were assembled by a robotic system and searched for a fit in a hierarchical process. The answer was encoded in a flash of green light: Some of the strands had a biological version of a flashlight signal - they were equipped with a naturally glowing fluorescent molecule bound to a second protein which keeps the light covered. A specialized enzyme, attracted to the site of the correct answer, removed the ‘cover' and let the light shine. The tiny water drops containing the biomolecular data-bases were able to answer very intricate queries, and they lit up in a combination of colors representing the complex answers.

Prof. Ehud Shapiro's research is supported by the Clore Center for Biological Physics; the Arie and Ida Crown Memorial Charitable Fund; the Phyllis and Joseph Gurwin Fund for Scientific Advancement; Sally Leafman Appelbaum, Scottsdale, AZ; the Carolito Stiftung, Switzerland; the Louis Chor Memorial Trust Fund; and Miel de Botton Aynsley, UK. Prof. Shapiro is the incumbent of the Harry Weinrebe Chair of Computer Science and Biology.

####

About Weizmann Institute of Science
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

For more information, please click here

Contacts:
Publications and Media Relations Department
Phone: 972-8-9343856 / 52
Fax: 972-8-9344132

Copyright © Weizmann Institute of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Possible Futures

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Nanobiotechnology

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Nanobiotix's promising data from Phase I/II head and neck cancer trial presented at ASCO June 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project