Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers Effectively Treat Tumors with Use of Nanotubes

Abstract:
By injecting man-made, microscopic tubes into tumors and heating them with a quick, 30-second zap of a laser, scientists have discovered a way to effectively kill kidney tumors in nearly 80 percent of mice. Researchers say that the finding suggests a potential future cancer treatment for humans.

Researchers Effectively Treat Tumors with Use of Nanotubes

Winston-Salem, NC | Posted on August 3rd, 2009

The study appears in the August issue of PNAS (Proceedings of the National Academy of Sciences). It is the result of a collaborative effort between Wake Forest University School of Medicine, the Wake Forest University Center for Nanotechnology and Molecular Materials, Rice University and Virginia Tech.

"When dealing with cancer, survival is the endpoint that you are searching for," said Suzy Torti, Ph.D., lead investigator for the study and professor of biochemistry at Wake Forest University School of Medicine. "It's great if you can get the tumor to shrink, but the gold standard is to make the tumor shrink or disappear and not come back. It appears that we've found a way to do that."

Nanotubes are long, thin, sub-microscopic tubes made of carbon. For the study, researchers used multi-walled nanotubes (MWCNTs), which contain several nanotubes nested within each other, prepared for the study by the Center for Nanotechnology and Molecular Materials. The tubes, when non-invasively exposed to laser-generated near-infrared radiation, respond by vibrating, creating heat. If enough heat is conducted, tumor cells near the tubes begin to shrink and die.

Using a mouse model, researchers injected kidney tumors with different quantities of MWCNTs and exposed the area to a three-watt laser for 30 seconds.

Researchers found that the mice who received no treatment for their tumors died about 30 days into the study. Mice who received the nanotubes alone or laser treatment alone survived for a similar length of time. However, in the mice who received the MWCNTs followed by a 30-second laser treatment, researchers found that the higher the quantity of nanotubes injected, the longer the mice lived and the less tumor regrowth was seen. In fact, in the group that received the highest dose of MWCNTs, tumors completely disappeared in 80 percent of the mice. Many of those mice continued to live tumor-free through the completion of the study, which was about nine months later.

"You can actually watch the tumors shrinking until, one day, they are gone," Torti said. "Not only did the mice survive, but they maintained their weight, didn't have any noticeable behavioral abnormalities and experienced no obvious problems with internal tissues. As far as we can tell, other than a transient burn on the skin that didn't seem to affect the animals and eventually went away, there were no real downsides - that's very encouraging."

Current thermal ablation, or heat therapy, treatments for human tumors include radiofrequency ablation, which applies a single-point source of heat to the tumor rather than evenly heating the tumor throughout, like the MWCNTs were able to. In addition to the MWCNTs used in this study, other nanomaterials, such as single-walled carbon nanotubes and gold nanoshells, are also currently undergoing experimental investigation as cancer therapies at other institutions.

"MWCNTs are more effective at producing heat than other investigational nanomaterials," Torti said. "Because this is a heat therapy rather than a biological therapy, the treatment works on all tumor types if you get them hot enough. We are hopeful that we will be able to translate this into humans."

Before the treatment can be tested in humans, however, studies need to be done to test the toxicity and safety, looking to see if the treatment causes any changes to organs over time, as well as the pharmacology of the treatment, looking at things such as what happens to the nanotubes, which are synthetic materials, over time.

The treatment would need to be tested in larger animals before being tested in human trials, as well. Conceptually, however, Torti said there is no barrier to applying the therapy into humans to treat tumors close to the surface of the skin, such as in the oral cavity and bladder wall.

"We're excited about this," Torti said. "This is the intersection between the physical and the medical sciences that represents the new frontier in modern medicine."

Co-authors on the study, funded by the National Cancer Institute, are Ravi Singh, Ph.D., Robert Kraft, Ph.D., Nicole Levi-Polyachenko, Ph.D., Heather Hatcher, Ph.D., Ralph D'Agostino, Jr., Ph.D., Nancy Kock, Ph.D., Steven Akman, M.D., Frank M. Torti, M.D. and Ph.D. students Andrew Burke and Xuanfeng Ding, all of the School of Medicine; David L. Carroll, Ph.D., director of the Wake Forest University Center for Nanotechnology and Molecular Materials; Marissa Rylander, Ph.D., Jon Whitney, M.S., Jessica Fisher, M.S., and Ph.D. students Chris Szot and Cara Buchanan, of Virginia Polytechnic Institute and State University (Virginia Tech); and Pulickel Ajayan, Ph.D., of Rice University.

####

About Wake Forest University Baptist Medical Center
Wake Forest University Baptist Medical Center is an academic health system comprised of North Carolina Baptist Hospital, Brenner Children’s Hospital, Wake Forest University Physicians, and Wake Forest University Health Sciences, which operates the university’s School of Medicine and Piedmont Triad Research Park. The system comprises 1,056 acute care, rehabilitation and long-term care beds and has been ranked as one of “America’s Best Hospitals” by U.S. News & World Report since 1993. Wake Forest Baptist is ranked 32nd in the nation by America’s Top Doctors for the number of its doctors considered best by their peers. The institution ranks in the top third in funding by the National Institutes of Health and fourth in the Southeast in revenues from its licensed intellectual property.

For more information, please click here

Contacts:
Media Relations Contacts:
Jessica Guenzel

(336) 716-3487

Bonnie Davis

(336) 716-4977

Shannon Koontz

(336) 716-2415

Copyright © Wake Forest University Baptist Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Nanotubes/Buckyballs

Chromium-centered cycloparaphenylene rings for making functionalized nanocarbons January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

Carbon nanotube finding could lead to flexible electronics with longer battery life January 14th, 2015

Nanomedicine

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Nanobiotechnology

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE